Applications of Mathematics, first online, pp. 1-27


WENO-Z scheme with new nonlinear weights for Hamilton-Jacobi equations and adaptive approximation

Kwangil Kim, Kwanhung Ri, Wonho Han

Received November 6, 2024.   Published online May 28, 2025.

Abstract:  A new fifth-order weighted essentially nonoscillatory (WENO) scheme is designed to approximate Hamilton-Jacobi equations. As employing a fifth-order linear approximation and three third-order ones on the same six-point stencil as before, a newly considered WENO-Z methodology is adapted to define nonlinear weights and the final WENO reconstruction results in a simple and clear convex combination. The scheme has formal fifth-order accuracy in smooth regions of the solution and nonoscillating behavior nearby singularities. A full account is given of the key role of parameters in WENO reconstruction and their selection. The latter half describes the adaptive stage on WENO approximation in convergence framework, which enables us to get the numerical solution to converge still achieving high-order accuracy for the nonconvex problems where the pure WENO scheme fails to converge. Detailed numerical experiments are performed to demonstrate the ability of the proposed numerical methods.
Keywords:  Hamilton-Jacobi equation; WENO-Z scheme; nonlinear weight; adaptive approximation; convergence
Classification MSC:  35F21, 65M12, 65M06

PDF available at:  Institute of Mathematics CAS

References:
[1] R. Abedian: A new fifth-order symmetrical WENO-Z scheme for solving Hamilton-Jacobi equations. J. Math. Model. 10 (2022), 279-297. DOI 10.22124/jmm.2021.20251.1765 | MR 4436118 | Zbl 1524.35139
[2] R. Abedian, R. Salehi: A RBFWENO finite difference scheme for Hamilton-Jacobi equations. Comput. Math. Appl. 76 (2020), 2002-2020. DOI 10.1016/j.camwa.2019.09.027 | MR 4070338 | Zbl 1453.65207
[3] R. Abgrall: Construction of simple, stable, and convergent high order schemes for steady first order Hamilton-Jacobi equations. SIAM J. Sci. Comput. 31 (2009), 2419-2446. DOI 10.1137/040615997 | MR 2520283 | Zbl 1197.65167
[4] O. Bokanowski, M. Falcone, S. Sahu: An efficient filtered scheme for some first order time-dependent Hamilton-Jacobi equations. SIAM J. Sci. Comput. 38 (2016), A171-A195. DOI 10.1137/140998482 | MR 3449908 | Zbl 1407.65093
[5] R. Borges, M. Carmona, B. Costa, W. S. Don: An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws. J. Comput. Phys. 227 (2008), 3191-3211. DOI 10.1016/j.jcp.2007.11.038 | MR 2392730 | Zbl 1136.65076
[6] S. Bryson, D. Levy: High-order central WENO schemes for multidimensional Hamilton-Jacobi equations. SIAM J. Numer. Anal. 41 (2003), 1339-1369. DOI 10.1137/S0036142902408404 | MR 2034884 | Zbl 1050.65076
[7] E. Carlini, R. Ferretti, G. Russo: A weighted essentially non-oscillator, large time-step scheme for Hamilton-Jacobi equations. SIAM J. Sci. Comput. 27 (2005), 1071-1091. DOI 10.1137/040608787 | MR 2199921 | Zbl 1105.65090
[8] M. G. Crandall, P.-L. Lions: Two approximations of solutions of Hamilton-Jacobi equations. Math. Comput. 43 (1984), 1-19. DOI 10.1090/S0025-5718-1984-0744921-8 | MR 0744921 | Zbl 0556.65076
[9] S. Gottlieb, C.-W. Shu, E. Tadmor: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43 (2001), 89-112. DOI 10.1137/S003614450036757X | MR 1854647 | Zbl 0967.65098
[10] W. Han, K. Kim, U. Hong: Convergence of a proposed adaptive WENO scheme for Hamilton-Jacobi equations. Appl. Math., Praha 68 (2023), 661-684. DOI 10.21136/AM.2023.0264-22 | MR 4645003 | Zbl 07790540
[11] A. K. Henrick, T. D. Aslam, J. M. Powers: Mapped weighted essentially non-oscillarotry schemes: Achieving optimal order near critical points. J. Comput. Phys. 207 (2005), 542-567. DOI 10.1016/j.jcp.2005.01.023 | Zbl 1072.65114
[12] C. Huang: WENO scheme with new smoothness indicator for Hamilton-Jacobi equation. Appl. Math. Comp. 290 (2016), 21-32. DOI 10.1016/j.amc.2016.05.022 | MR 3523409 | Zbl 1410.65313
[13] G.-S. Jiang, D. Peng: Weighted ENO schemes for Hamilton-Jacobi equations. SIAM J. Sci. Comput. 21 (2000), 2126-2143. DOI 10.1137/S106482759732455X | MR 1762034 | Zbl 0957.35014
[14] Y.-Q. Jiang, S.-G. Zhou, X. Zhang, Y.-G. Hu: High-order weighted compact nonlinear scheme for one- and two-dimensional Hamilton-Jacobi equations. Appl. Numer. Math. 171 (2022), 353-368. DOI 10.1016/j.apnum.2021.09.012 | MR 4318807 | Zbl 1522.65145
[15] S. Jin, Z. Xin: Numerical passage from systems of conservation laws to Hamilton-Jacobi equations, and relaxation schemes. SIAM J. Numer. Anal. 35 (1998), 2385-2404. DOI 10.1137/S0036142996314366 | MR 1655852 | Zbl 0921.65063
[16] K. Kim, U. Hong, K. Ri, J. Yu: Construction of convergent adaptive weighted essentially non-oscillatory schemes for Hamilton-Jacobi equations on triangular meshes. Appl. Math., Praha 66 (2021), 599-617. DOI 10.21136/AM.2021.0368-19 | MR 4283305 | Zbl 1554.65212
[17] K. Kim, Y. Li: Construction of convergent high order schemes for time dependent Hamilton-Jacobi equations. J. Sci. Comput. 65 (2015), 110-137. DOI 10.1007/s10915-014-9955-5 | MR 3394440 | Zbl 1408.65053
[18] D. Levy, S. Nayak, C.-W. Shu, Y.-T. Zhang: Central WENO schemes for Hamilton-Jacobi equations on triangular meshes. SIAM J. Sci. Comput. 28 (2006), 2229-2247. DOI 10.1137/040612002 | MR 2272259 | Zbl 1126.65075
[19] A. M. Oberman, T. Salvador: Filtered schemes for Hamilton-Jacobi equations: A simple construction of convergent accurate difference schemes. J. Comput. Phys. 284 (2015), 367-388. DOI 10.1016/j.jcp.2014.12.039 | MR 3303624 | Zbl 1352.65422
[20] S. Osher, C.-W. Shu: High-order essentially nonosillatory schemes for Hamilton-Jacobi equations. SIAM J. Numer. Anal. 28 (1991), 907-922. DOI 10.1137/0728049 | MR 1111446 | Zbl 0736.65066
[21] J. Qiu, C.-W. Shu: Hermite WENO schemes for Hamilton-Jacobi equations. J. Comput. Phys. 204 (2005), 82-99. DOI 10.1016/j.jcp.2004.10.003 | MR 2121905 | Zbl 1070.65078
[22] J.-M. Qiu, C.-W. Shu: Convergence of high order finite volume weighted essentially nonoscillatory scheme and discontinuous Galerkin method for nonconvex conservation laws. SIAM J. Sci. Comput. 31 (2008), 584-607. DOI 10.1137/070687487 | MR 2460790 | Zbl 1186.65123
[23] R. Samala, B. Biswas: Arc length-based WENO scheme for Hamilton-Jacobi equations. Commun. Appl. Math. Comput. 3 (2021), 481-496. DOI 10.1007/s42967-020-00091-5 | MR 4303511 | Zbl 1499.65429
[24] C.-W. Shu: High order weighted essentially nonoscillatory schemes for convection dominated problems. SIAM Rev. 51 (2009), 82-126. DOI 10.1137/070679065 | MR 2481112 | Zbl 1160.65330
[25] C.-W. Shu: Essentially non-oscillatory and weighted essentially non-oscillatory schemes. Acta Numerica 29 (2020), 701-762. DOI 10.1017/S0962492920000057 | MR 4189296 | Zbl 07674567
[26] Z. Xu, C.-W. Shu: Anti-diffusive high order WENO schemes for Hamilton-Jacobi equations. Methods Appl. Anal. 12 (2005), 169-190. DOI 10.4310/MAA.2005.v12.n2.a6 | MR 2257526 | Zbl 1119.65378
[27] Y.-T. Zhang, C.-W. Shu: High-order WENO schemes for Hamilton-Jacobi equations on triangular meshes. SIAM J. Sci. Comput. 24 (2003), 1005-1030. DOI 10.1137/S1064827501396798 | MR 1950522 | Zbl 1034.65051
[28] J. Zhu, J. Qiu: Hermite WENO schemes for Hamilton-Jacobi equations on unstructured meshes. J. Comput. Phys. 254 (2013), 76-92. DOI 10.1016/j.jcp.2013.07.030 | MR 3143358 | Zbl 1349.65364
[29] J. Zhu, J. Qiu: A new fifth order finite difference WENO scheme for Hamilton-Jacobi equations. Numer. Methods Partial Differ. Equations 33 (2017), 1095-1113. DOI 10.1002/num.22133 | MR 3652179 | Zbl 1371.65089

Affiliations:   Kwangil Kim (corresponding author), Kwanhung Ri, Wonho Han, Department of Mathematics, University of Sciences, Unjong District 355, 950003 Pyongyang, Democratic People's Republic of Korea, e-mail: kimki1973@star-co.net.kp


 
PDF available at: