Czechoslovak Mathematical Journal, Vol. 67, No. 2, pp. 525-531, 2017


Some finite generalizations of Euler's pentagonal number theorem

Ji-Cai Liu

Received February 10, 2016.  First published March 1, 2017.

Abstract:  Euler's pentagonal number theorem was a spectacular achievement at the time of its discovery, and is still considered to be a beautiful result in number theory and combinatorics. In this paper, we obtain three new finite generalizations of Euler's pentagonal number theorem.
Keywords:  $q$-binomial coefficient; $q$-binomial theorem; pentagonal number theorem
Classification MSC:  05A17, 11B65


References:
[1] G. E. Andrews: The Theory of Partitions. Encyclopedia of Mathematics and Its Applications, Vol. 2. Section: Number Theory. Reading, Advanced Book Program, Addison-Wesley Publishing Company, Massachusetts (1976). DOI 10.1002/zamm.19790590632 | MR 0557013 | Zbl 0655.10001
[2] G. E. Andrews: Euler's pentagonal number theorem. Math. Mag. 56 (1983), 279-284. DOI 10.2307/2690367 | MR 0720648 | Zbl 0523.01011
[3] A. Berkovich, F. G. Garvan: Some observations on Dyson's new symmetries of partitions. J. Comb. Theory, Ser. A 100 (2002), 61-93. DOI 10.1006/jcta.2002.3281 | MR 1932070 | Zbl 1016.05003
[4] T. J. Bromwich: An Introduction to the Theory of Infinite Series. Chelsea Publishing Company, New York (1991). Zbl 0901.40001
[5] S. B. Ekhad, D. Zeilberger: The number of solutions of $X^2=0$ in triangular matrices over GF($q$). Electron. J. Comb. 3 (1996), Research paper R2, 2 pages printed version in J. Comb. 3 (1996), 25-26. MR 1364064 | Zbl 0851.15010
[6] M. Petkovšek, H. S. Wilf, D. Zeilberger: $A=B$. With foreword by Donald E. Knuth, A. K. Peters, Wellesley (1996). MR 1379802 | Zbl 0848.05002
[7] D. Shanks: A short proof of an identity of Euler. Proc. Am. Math. Soc. 2 (1951), 747-749. DOI 10.1090/S0002-9939-1951-0043808-6 | MR 0043808 | Zbl 0044.28403
[8] S. O. Warnaar: $q$-hypergeometric proofs of polynomial analogues of the triple product identity, Lebesgue's identity and Euler's pentagonal number theorem. Ramanujan J. 8 (2004), 467-474. DOI 10.1007/s11139-005-0275-0 | MR 2130521 | Zbl 1066.05023

Affiliations:   Ji-Cai Liu, College of Mathematics and Information Science, Wenzhou University, 276 Xueyuan Middle Road, Wenzhou, 325027, Zhejiang, P. R. China, e-mail: jc2051@163.com


 
PDF available at: