Czechoslovak Mathematical Journal, Vol. 68, No. 1, pp. 169-193, 2018


A higher rank Selberg sieve and applications

Akshaa Vatwani

Received August 2, 2016.   First published December 12, 2017.

Abstract:  We develop an axiomatic formulation of the higher rank version of the classical Selberg sieve. This allows us to derive a simplified proof of the Zhang and Maynard-Tao result on bounded gaps between primes. We also apply the sieve to other subsequences of the primes and obtain bounded gaps in various settings.
Keywords:  Selberg sieve; bounded gaps; prime $k$-tuples
Classification MSC:  11N05, 11N35, 11N36


References:
[1] J. Friedlander, H. Iwaniec: Opera de Cribro. Colloquium Publications, American Mathematical Society 57, Providence (2010). DOI 10.1090/coll/057 | MR 2647984 | Zbl 1226.11099
[2] H. Halberstam, H.-E. Richert: Sieve Methods. London Mathematical Society Monographs 4, Academic Press, London (1974). MR 0424730 | Zbl 0298.10026
[3] C. Hooley: On Artin's conjecture. J. Reine Angew. Math. 225 (1967), 209-220. DOI 10.1515/crll.1967.225.209 | MR 0207630 | Zbl 0221.10048
[4] J. C. Lagarias, A. M. Odlyzko: Effective versions of the Chebotarev density theorem. Algebraic Number Fields: $L$-Functions and Galois Properties. Proc. Sympos., Univ. Durham, Durham, 1975, Academic Press, London (1977), 409-464. MR 0447191 | Zbl 0362.12011
[5] J. Maynard: Small gaps between primes. Ann. Math. (2) 181 (2015), 383-413. DOI 10.4007/annals.2015.181.1.7 | MR 3272929 | Zbl 1306.11073
[6] M. R. Murty: Artin's Conjecture and Non-abelian Sieves. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge (1980). MR 2940944
[7] M. R. Murty, V. K. Murty: A variant of the Bombieri-Vinogradov theorem. Number Theory. Proc. Conf., Montreal, 1985, CMS Conf. Proc. 7 (1987), 243-272. MR 0894326 | Zbl 0619.10039
[8] P. Pollack: Bounded gaps between primes with a given primitive root. Algebra Number Theory 8 (2014), 1769-1786. DOI 10.2140/ant.2014.8.1769 | MR 3272281 | Zbl 06361769
[9] D. H. J. Polymath: Variants of the Selberg sieve, and bounded intervals containing many primes. Res. Math. Sci. (electronic only) 1 (2014), Paper No. 12, 83 pages; erratum ibid. (electronic only) 2 (2015), Paper No. 15, 2 pages. DOI 10.1186/s40687-014-0012-7 | MR 3374754 | Zbl 06587992
[10] A. Selberg: Sieve methods. 1969 Number Theory Institute. Proc. Sympos. Pure Math. 20, Stony Brook, 1969, Amer. Mat. Soc., Providence (1971), 311-351. DOI 10.1090/pspum/020/0567686 | MR 0567686 | Zbl 0222.10048
[11] A. Selberg: Collected Papers. Volume II. Springer, Berlin (1991). MR 1295844 | Zbl 0729.11001
[12] J. Thorner: Bounded gaps between primes in Chebotarev sets. Res. Math. Sci. (electronic only) 1 (2014), Paper No. 4, 16 pages. DOI 10.1186/2197-9847-1-4 | MR 3344173 | Zbl 06588225
[13] A. Vatwani: Bounded gaps between Gaussian primes. J. Number Theory 171 (2017), 449-473. DOI 10.1016/j.jnt.2016.07.008 | MR 3556693 | Zbl 06643869
[14] Y. Zhang: Bounded gaps between primes. Ann. Math. (2) 179 (2014), 1121-1174. DOI 10.4007/annals.2014.179.3.7 | MR 3171761 | Zbl 1290.11128

Affiliations:   Akshaa Vatwani, Department of Mathematics and Statistics, Queen's University, 99 University Ave, Kingston, Ontario K7L3N6, Canada, e-mail: akshaa@mast.queensu.ca


 
PDF available at: