Czechoslovak Mathematical Journal, Vol. 68, No. 3, pp. 829-842, 2018


Weighted generalization of the Ramadanov's theorem and further considerations

Zbigniew Pasternak-Winiarski, Paweł Wójcicki

Received January 7, 2017.   Published online May 9, 2018.

Abstract:  We study the limit behavior of weighted Bergman kernels on a sequence of domains in a complex space $\mathbb C^N$, and show that under some conditions on domains and weights, weighed Bergman kernels converge uniformly on compact sets. Then we give a weighted generalization of the theorem given by M. Skwarczyński (1980), highlighting some special property of the domains, on which the weighted Bergman kernels converge uniformly. Moreover, we show that convergence of weighted Bergman kernels implies this property, which will give a characterization of the domains, for which the inverse of the Ramadanov's theorem holds.
Keywords:  weighted Bergman kernel; admissible weight; sequence of domains
Classification MSC:  32A36, 32A25


References:
[1] N. Aronszajn: Theory of reproducing kernels. Trans. Am. Math. Soc. 68 (1950), 337-404. DOI 10.2307/1990404 | MR 0051437 | Zbl 0037.20701
[2] S. Bergman: The Kernel Function and Conformal Mapping. Mathematical Surveys 5, American Mathematical Society, Providence (1970). DOI 10.1090/surv/005 | MR 0507701 | Zbl 0208.34302
[3] H. P. Boas: Counterexample to the Lu Qi-Keng conjecture. Proc. Am. Math. Soc. 97 (1986), 374-375. DOI 10.2307/2046535 | MR 0835902 | Zbl 0596.32032
[4] M. Engliš: Weighted Bergman kernels and quantization. Commun. Math. Phys. 227 (2002), 211-241. DOI 10.1007/s002200200634 | MR 1903645 | Zbl 1010.32002
[5] M. Engliš: Toeplitz operators and weighted Bergman kernels. J. Funct. Anal. 255 (2008), 1419-1457. DOI 10.1016/j.jfa.2008.06.026 | MR 2565714 | Zbl 1155.32001
[6] F. Forelli, W. Rudin: Projections on spaces of holomorphic functions in balls. Indiana Univ. Math. J. 24 (1974), 593-602. DOI 10.1512/iumj.1974.24.24044 | MR 0357866 | Zbl 0297.47041
[7] R. L. Jacobson: Weighted Bergman Kernel Functions and the Lu Qi-keng Problem. Thesis (Ph.D.). A&M University, Texas (2012). MR 3068007
[8] M. Jarnicki, P. Pflug: Invariant Distances and Metrics in Complex Analysis. De Gruyter Expositions in Mathematics 9, Walter de Gruyter, Berlin (2013). DOI 10.1515/9783110253863 | MR 3114789 | Zbl 1273.32002
[9] S. G. Krantz: Function Theory of Several Complex Variables. American Mathematical Society, Providence (2001). DOI 10.1090/chel/340 | MR 1846625 | Zbl 1087.32001
[10] S. G. Krantz: Geometric Analysis of the Bergman Kernel and Metric. Graduate Texts in Mathematics 268, Springer, New York (2013). DOI 10.1007/978-1-4614-7924-6 | MR 3114665 | Zbl 1281.32004
[11] E. Ligocka: On the Forelli-Rudin construction and weighted Bergman projections. Stud. Math. 94 (1989), 257-272. DOI 10.4064/sm-94-3-257-272 | MR 1019793 | Zbl 0688.32020
[12] A. Odzijewicz: On reproducing kernels and quantization of states. Commun. Math. Phys. 114 (1988), 577-597. DOI 10.1007/BF01229456 | MR 0929131 | Zbl 0645.53044
[13] Z. Pasternak-Winiarski: On the dependence of the reproducing kernel on the weight of integration. J. Funct. Anal. 94 (1990), 110-134. DOI 10.1016/0022-1236(90)90030-O | MR 1077547 | Zbl 0739.46010
[14] Z. Pasternak-Winiarski: On weights which admit the reproducing kernel of Bergman type. Int. J. Math. Math. Sci. 15 (1992), 1-14. DOI 10.1155/S0161171292000012 | MR 1143923 | Zbl 0749.32019
[15] I. Ramadanov: Sur une propriété de la fonction de Bergman. C. R. Acad. Bulg. Sci. 20 (1967), 759-762. (In French.) MR 0226042 | Zbl 0206.09002
[16] B. V. Shabat: Introduction to Complex Analysis. Part II: Functions of Several Variables. Translations of Mathematical Monographs 110, American Mathematical Society, Providence (1992). MR 1192135 | Zbl 0799.32001
[17] M. Skwarczyński: Biholomorphic invariants related to the Bergman function. Diss. Math. 173 (1980), 59 pages. MR 0575756 | Zbl 0443.32014
[18] M. Skwarczyński, T. Iwiński: The convergence of Bergman functions for a decreasing sequence of domains. Approximation Theory. Proc. Conf. Poznan 1972 (Z. Ciesielski, J. Musielak, eds.). D. Reidel, Dordrecht (1975), pp. 117-120. MR 0450534 | Zbl 0328.30005
[19] M. Skwarczyński, T. Mazur: Wstepne twierdzenia teorii funkcji wielu zmiennych zespolonych. Wydawnictwo Krzysztof Biesaga, Warszawa (2001). (In Polish.)
[20] P. M. Wójcicki: Weighted Bergman kernel function, admissible weights and the Ramadanov theorem. Mat. Stud. 42 (2014), 160-164. MR 3381259 | Zbl 1327.32005

Affiliations:   Zbigniew Pasternak-Winiarski, Paweł M. Wójcicki, Faculty of Mathematics and Information Science, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland, e-mail: z.pasternak-winiarski@mini.pw.edu.pl, p.wojcicki@mini.pw.edu.pl


 
PDF available at: