Czechoslovak Mathematical Journal, Vol. 69, No. 2, pp. 379-390, 2019


Regularity of renormalized solutions to nonlinear elliptic equations away from the support of measure data

Andrea Dall'Aglio, Sergio Segura de León

Received July 6, 2017.   Published online August 6, 2018.

Abstract:  We prove boundedness and continuity for solutions to the Dirichlet problem for the equation $-{\rm div}(a(x,\nabla u))=h(x,u)+\mu$, in $\Omega\subset\R^N$, where the left-hand side is a Leray-Lions operator from $W_0^{1,p} (\Omega)$ into $W^{-1,p'}(\Omega)$ with $1<p<N$, $h(x,s)$ is a Carathéodory function which grows like $|s|^{p-1}$ and $\mu$ is a finite Radon measure. We prove that renormalized solutions, though not globally bounded, are Hölder-continuous far from the support of $\mu$.
Keywords:  bounded solution; $p$-Laplacian; renormalized solution; measure data
Classification MSC:  35B45, 35B65, 35J15, 35J25, 35J60, 35J92
DOI:  10.21136/CMJ.2018.0322-17


References:
[1] H. Abdel Hamid, M. F. Bidaut-Veron: On the connection between two quasilinear elliptic problems with source terms of order $0$ or $1$. Commun. Contemp. Math. 12 (2010), 727-788. DOI 10.1142/S0219199710003993 | MR 2733197 | Zbl 1205.35135
[2] B. Abdellaoui, A. Dall'Aglio, I. Peral: Some remarks on elliptic problems with critical growth in the gradient. J. Differ. Equations 222 (2006), 21-62 corrigendum ibid. 246 (2009), 2988-2990 . DOI 10.1016/j.jde.2005.02.009 | MR 2200746 | Zbl 1357.35089
[3] B. Abdellaoui, A. Dall'Aglio, S. Segura de León: Multiplicity of solutions to elliptic problems involving the 1-Laplacian with a critical gradient term. Adv. Nonlinear Stud. 17 (2017), 333-353. DOI 10.1515/ans-2017-0011 | MR 3641646 | Zbl 1370.35115
[4] P. Bénilan, L. Boccardo, T. Gallouët, R. Gariepy, M. Pierre, J. L. Vazquez: An $L^1$-theory of existence and uniqueness of solutions of nonlinear elliptic equations. Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 22 (1995), 241-273. MR 1354907 | Zbl 0866.35037
[5] L. Boccardo, T. Gallouët, L. Orsina: Existence and uniqueness of entropy solutions for nonlinear elliptic equations with measure data. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 13 (1996), 539-551. DOI 10.1016/S0294-1449(16)30113-5 | MR 1409661 | Zbl 0857.35126
[6] L. Boccardo, T. Leonori: Local properties of solutions of elliptic equations depending on local properties of the data. Methods Appl. Anal. 15 (2008), 53-63. DOI 10.4310/MAA.2008.v15.n1.a6 | MR 2482209 | Zbl 1173.35488
[7] H. Brézis, T. Kato: Remarks on the Schrödinger operator with singular complex potentials. J. Math. Pures Appl., IX. Sér. 58 (1979), 137-151. MR 0539217 | Zbl 0408.35025
[8] G. Dal Maso, F. Murat, L. Orsina, A. Prignet: Renormalization solutions of elliptic equations with general measure data. Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 28 (1999), 741-808. MR 1760541 | Zbl 0958.35045
[9] E. Giusti: Direct Methods in the Calculus of Variations. World Scientific, Singapore (2003). DOI 10.1142/9789812795557 | MR 1962933 | Zbl 1028.49001
[10] N. Grenon: Existence results for semilinear elliptic equations with small measure data. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 19 (2002), 1-11. DOI 10.1016/S0294-1449(01)00079-8 | MR 1902548 | Zbl 1011.35054
[11] B. J. Jaye, E. Verbitsky: Local and global behaviour of solutions to nonlinear equations with natural growth terms. Arch. Ration. Mech. Anal. 204 (2012), 627-681. DOI 10.1007/s00205-011-0491-2 | MR 2909911 | Zbl 1255.35137
[12] G. Stampacchia: Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients. Ann. Inst. Fourier 15 (1965), 189-257. (In French.) DOI 10.5802/aif.204 | MR 0192177 | Zbl 0151.15401

Affiliations:   Andrea Dall'Aglio, Dipartimento di Matematica "G. Castelnuovo", Università di Roma "La Sapienza", Piazzale A. Moro 2, I-00185 Roma, Italy, e-mail: dallaglio@mat.uniroma1.it; Sergio Segura de León, Departament d'Anàlisi Matemàtica, Universitat de València, Dr. Moliner 50, 46100 Burjassot, València, Spain, e-mail: sergio.segura@uv.es


 
PDF available at: