Czechoslovak Mathematical Journal, Vol. 69, No. 2, pp. 453-470, 2019


On the endomorphism ring and Cohen-Macaulayness of local cohomology defined by a pair of ideals

Thiago H. Freitas, Victor H. Jorge Pérez

Received August 19, 2017.   Published online December 13, 2018.

Abstract:  Let $\mathfrak{a}$, $I$, $J$ be ideals of a Noetherian local ring $(R,\mathfrak{m},k)$. Let $M$ and $N$ be finitely generated $R$-modules. We give a generalized version of the Duality Theorem for Cohen-Macaulay rings using local cohomology defined by a pair of ideals. We study the behavior of the endomorphism rings of $H^t_{I,J}(M)$ and $D(H^t_{I,J}(M))$, where $t$ is the smallest integer such that the local cohomology with respect to a pair of ideals is nonzero and $D(-):= {\rm Hom}_R(-,E_R(k))$ is the Matlis dual functor. We show that if $R$ is a $d$-dimensional complete Cohen-Macaulay ring and $H^i_{I,J}(R)=0$ for all $i\neq t$, the natural homomorphism $R\rightarrow{\rm Hom}_R(H^t_{I,J}(K_R), H^t_{I,J}(K_R))$ is an isomorphism, where $K_R$ denotes the canonical module of $R$. Also, we discuss the depth and Cohen-Macaulayness of the Matlis dual of the top local cohomology modules with respect to a pair of ideals.
Keywords:  local cohomology; Matlis duality; endomorphism ring
Classification MSC:  13D45; 13C14


References:
[1] M. Aghapournahr, K. Ahmadi-Amoli, M. Y. Sadeghi: The concept of {$(I,J)$}-Cohen-Macaulay modules. J. Algebr. Syst. 3 (2015), 1-10. DOI 10.22044/JAS.2015.482 | MR 3534204
[2] K. Ahmadi-Amoli, M. Y. Sadeghi: On the local cohomology modules defined by a pair of ideals and Serre subcategory. J. Math. Ext. 7 (2013), 47-62. MR 3248761 | Zbl 1327.13056
[3] M. P. Brodmann, R. Y. Sharp: Local Cohomology: an Algebraic Introduction with Geometric Applications. Cambridge Studies in Advanced Mathematics 39, Cambridge University Press, Cambridge (1998). DOI 10.1017/CBO9780511629204 | MR 1613627 | Zbl 0903.13006
[4] W. Bruns, J. Herzog: Cohen-Macaulay Rings. Cambridge Studies in Advanced Mathematics 39, Cambridge University Press, Cambridge (1998). DOI 10.1017/CBO9780511608681 | MR 1251956 | Zbl 0909.13005
[5] L. Chu: Top local cohomology modules with respect to a pair of ideals. Proc. Am. Math. Soc. 139 (2011), 777-782. DOI 10.1090/S0002-9939-2010-10471-9 | MR 2745630 | Zbl 1210.13018
[6] L.-Z. Chu, Q. Wang: Some results on local cohomology modules defined by a pair of ideals. J. Math. Kyoto Univ. 49 (2009), 193-200. DOI 10.1215/kjm/1248983036 | MR 2531134 | Zbl 1174.13024
[7] M. Eghbali, P. Schenzel: On an endomorphism ring of local cohomology. Commun. Algebra 40 (2012), 4295-4305. DOI 10.1080/00927872.2011.588982 | MR 2982939 | Zbl 1273.13027
[8] T. H. Freitas, V. H. Jorge Pérez: On formal local cohomology modules with respect to a pair of ideals. J. Commut. Algebra 8 (2016), 337-366. DOI 10.1216/JCA-2016-8-3-337 | MR 3546002 | Zbl 1348.13026
[9] T. H. Freitas, V. H. Jorge Pérez: Artinianness and finiteness of formal local cohomology modules with respect to a pair of ideals. Beitr. Algebra Geom. 58 (2017), 319-340. DOI 10.1007/s13366-016-0322-6 | MR 3651656 | Zbl 1387.13040
[10] R. Hartshorne: Local Cohomology. Lecture Notes in Mathematics 41, Springer, Berlin (1967). DOI 10.1007/BFb0073971 | MR 224620 | Zbl 0185.49202
[11] M. Hellus, P. Schenzel: On cohomologically complete intersections. J. Algebra 320 (2008), 3733-3748. DOI 10.1016/j.jalgebra.2008.09.006 | MR 2457720 | Zbl 1157.13012
[12] M. Hellus, J. Stückrad: On endomorphism rings of local cohomology modules. Proc. Am. Math. Soc. 136 (2008), 2333-2341. DOI 10.1090/S0002-9939-08-09240-X | MR 2390499 | Zbl 1152.13011
[13] M. Hochster, C. Huneke: Indecomposable canonical modules and connectedness. Commutative Algebra: Syzygies, Multiplicities, and Birational Algebra (W. J. Heinzer et al., eds.). Contemp. Math. 159, American Mathematical Society, Providence (1994), 197-208. DOI 10.1090/conm/159 | MR 1266184 | Zbl 0809.13003
[14] S. B. Iyengar, G. J. Leuschke, A. Leykin, C. Miller, E. Miller, A. K. Singh, U. Walther: Twenty-Four Hours of Local Cohomology. Graduate Studies in Mathematics 87, American Mathematical Society, Providence (2007). DOI 10.1090/gsm/087 | MR 2355715 | Zbl 1129.13001
[15] K. Khashyarmanesh: On the endomorphism rings of local cohomology modules. Can. Math. Bull. 53 (2010), 667-673. DOI 10.4153/CMB-2010-072-1 | MR 2761689 | Zbl 1203.13019
[16] A. Mafi: Some criteria for the Cohen-Macaulay property and local cohomology. Acta Math. Sin., Engl. Ser. 25 (2009), 917-922. DOI 10.1007/s10114-009-7418-y | MR 2511535 | Zbl 1183.13025
[17] W. Mahmood: On endomorphism ring of local cohomology modules. Available at https://arxiv.org/abs/1308.2584.
[18] S. Payrovi, M. Lotfi Parsa: Artinianness of local cohomology modules defined by a pair of ideals. Bull. Malays. Math. Sci. Soc. (2) 35 (2012), 877-883. MR 2960891 | Zbl 1253.13018
[19] S. Payrovi, M. Lotfi Parsa: Finiteness of local cohomology modules defined by a pair of ideals. Commun. Algebra 41 (2013), 627-637. DOI 10.1080/00927872.2011.631206 | MR 3011786 | Zbl 1263.13016
[20] A. Pour Eshmanan Talemi, A. Tehranian: Local cohomology with respect to a cohomologically complete intersection pair of ideals. Iran. J. Math. Sci. Inform. 9 (2014), 7-13. DOI 10.7508/ijmsi.2014.02.002 | MR 3330480 | Zbl 1314.13035
[21] M. Y. Sadeghi, M. Eghbali, K. Ahmadi-Amoli: On top local cohomology modules, Matlis duality and tensor products. To appear in J. Algebra Appl. DOI 10.1142/S0219498819501792
[22] P. Schenzel: On birational Macaulayfications and Cohen-Macaulay canonical modules. J. Algebra 275 (2004), 751-770. DOI 10.1016/j.jalgebra.2003.12.016 | MR 2052635 | Zbl 1103.13014
[23] P. Schenzel: On endomorphism rings and dimensions of local cohomology modules. Proc. Am. Math. Soc. 137 (2009), 1315-1322. DOI 10.1090/S0002-9939-08-09676-7 | MR 2465654 | Zbl 1163.13010
[24] P. Schenzel: Matlis duals of local cohomology modules and their endomorphism rings. Arch. Math. 95 (2010), 115-123. DOI 10.1007/s00013-010-0149-6 | MR 2674247 | Zbl 1200.13028
[25] P. Schenzel: On the structure of the endomorphism ring of a certain local cohomology module. J. Algebra 344 (2011), 229-245. DOI 10.1016/j.jalgebra.2011.07.014 | MR 2831938 | Zbl 1236.13016
[26] J. R. Strooker: Homological Questions in Local Algebra. London Mathematical Society Lecture Note Series 145, Cambridge University Press, Cambridge (1990). DOI 10.1017/CBO9780511629242 | MR 1074178 | Zbl 0786.13008
[27] R. Takahashi, Y. Yoshino, T. Yoshizawa: Local cohomology based on a nonclosed support defined by a pair of ideals. J. Pure Appl. Algebra 213 (2009), 582-600. DOI 10.1016/j.jpaa.2008.09.008 | MR 2483839 | Zbl 1160.13013
[28] A. Tehranian, A. Pour Eshmanan Talemi: Non-Artinian local cohomology with respect to a pair of ideals. Algebra Colloq. 20 (2013), 637-642. DOI 10.1142/S1005386713000606 | MR 3116792 | Zbl 1282.13038
[29] A. Tehranian, A. Pour Eshmanan Talemi: Filter depth and cofiniteness of local cohomology modules defined by a pair of ideals. Algebra Colloq. 21 (2014), 597-604. DOI 10.1142/S1005386714000546 | MR 3266511 | Zbl 1304.13037

Affiliations:   Thiago H. Freitas, Universidade Tecnológica Federal do Paraná, Campus Guarapuava CEP 85053-525, Guarapuava, Brazil, e-mail: freitas.thf@gmail.com, Victor Hugo Jorge Pérez, Universidade de São Paulo, ICMC, Caixa Postal 668, 13560-970, São Carlos, Brazil, e-mail: vhjperez@icmc.usp.br


 
PDF available at: