Czechoslovak Mathematical Journal, Vol. 68, No. 3, pp. 601-610, 2018


Note on a conjecture for the sum of signless Laplacian eigenvalues

Xiaodan Chen, Guoliang Hao, Dequan Jin, Jingjian Li

Received October 18, 2016.   Published online June 7, 2018.

Abstract:  For a simple graph $G$ on $n$ vertices and an integer $k$ with $1\leq k\leq n$, denote by $\mathcal{S}_k^+(G)$ the sum of $k$ largest signless Laplacian eigenvalues of $G$. It was conjectured that $\mathcal{S}_k^+(G)\leq e(G)+{k+1 \choose2}$, where $e(G)$ is the number of edges of $G$. This conjecture has been proved to be true for all graphs when $k\in\{1,2,n-1,n\}$, and for trees, unicyclic graphs, bicyclic graphs and regular graphs (for all $k$). In this note, this conjecture is proved to be true for all graphs when $k=n-2$, and for some new classes of graphs.
Keywords:  sum of signless Laplacian eigenvalues; upper bound; clique number; girth
Classification MSC:  05C50, 15A18


References:
[1] F. Ashraf, G. R. Omidi, B. Tayfeh-Rezaie: On the sum of signless Laplacian eigenvalues of a graph. Linear Algebra Appl. 438 (2013), 4539-4546. DOI 10.1016/j.laa.2013.01.023 | MR 3034549 | Zbl 1282.05087
[2] H. Bai: The Grone-Merris conjecture. Trans. Am. Math. Soc. 363 (2011), 4463-4474. DOI 10.1090/S0002-9947-2011-05393-6 | MR 2792996 | Zbl 1258.05066
[3] A. E. Brouwer, W. H. Haemers: Spectra of Graphs. Universitext, Springer, Berlin (2012). DOI 10.1007/978-1-4614-1939-6 | MR 2882891 | Zbl 1231.05001
[4] D. Cvetković, P. Rowlinson, S. Simić: An Introduction to the Theory of Graph Spectra. London Mathematical Society Student Texts 75, Cambridge University Press, Cambridge (2010). DOI 10.1017/CBO9780511801518 | MR 2571608 | Zbl 1211.05002
[5] Z. Du, B. Zhou: Upper bounds for the sum of Laplacian eigenvalues of graphs. Linear Algebra Appl. 436 (2012), 3672-3683. DOI 10.1016/j.laa.2012.01.007 | MR 2900744 | Zbl 1241.05074
[6] L. Feng, G. Yu: On three conjectures involving the signless Laplacian spectral radius of graphs. Publ. Inst. Math., Nouv. Sér. 85 (2009), 35-38. DOI 10.2298/PIM0999035F | MR 2536687 | Zbl 1265.05365
[7] E. Fritscher, C. Hoppen, I. Rocha, V. Trevisan: On the sum of the Laplacian eigenvalues of a tree. Linear Algebra Appl. 435 (2011), 371-399. DOI 10.1016/j.laa.2011.01.036 | MR 2782788 | Zbl 1226.05154
[8] H. A. Ganie, A. M. Alghamdi, S. Pirzada: On the sum of the Laplacian eigenvalues of a graph and Brouwer's conjecture. Linear Algebra Appl. 501 (2016), 376-389. DOI 10.1016/j.laa.2016.03.034 | MR 3485073 | Zbl 1334.05080
[9] R. Grone, R. Merris: The Laplacian spectrum of a graph II. SIAM J. Discrete Math. 7 (1994), 221-229. DOI 10.1137/S0895480191222653 | MR 1271994 | Zbl 0795.05092
[10] W. H. Haemers, A. Mohammadian, B. Tayfeh-Rezaie: On the sum of Laplacian eigenvalues of graphs. Linear Algebra Appl. 432 (2010), 2214-2221. DOI 10.1016/j.laa.2009.03.038 | MR 2599854 | Zbl 1218.05094
[11] I. Rocha, V. Trevisan: Bounding the sum of the largest Laplacian eigenvalues of graphs. Discrete Appl. Math. 170 (2014), 95-103. DOI 10.1016/j.dam.2014.01.023 | MR 3176708 | Zbl 1288.05167
[12] S. Wang, Y. Huang, B. Liu: On a conjecture for the sum of Laplacian eigenvalues. Math. Comput. Modelling 56 (2012), 60-68. DOI 10.1016/j.mcm.2011.12.047 | MR 2935294 | Zbl 1255.05118
[13] J. Yang, L. You: On a conjecture for the signless Laplacian eigenvalues. Linear Algebra Appl. 446 (2014), 115-132. DOI 10.1016/j.laa.2013.12.032 | MR 3163132 | Zbl 1292.05182

Affiliations:   Xiaodan Chen, College of Mathematics and Information Science, Guangxi University, No. 100, Daxue Road, Nanning, Guangxi, P. R. China, e-mail: x.d.chen@live.cn; Guoliang Hao (corresponding author), College of Science, East China University of Technology, No. 418, Guanglan Road, Nanchang 330013, Jiangxi, P. R. China, e-mail: guoliang-hao@163.com; Dequan Jin, Jingjian Li, College of Mathematics and Information Science, Guangxi University, No. 100, Daxue Road, Nanning, Guangxi, P. R. China, e-mail: dqjin@yahoo.cn, lijjhx@163.com


 
PDF available at: