Czechoslovak Mathematical Journal, first online, pp. 1-25


The torsion theory and the Melkersson condition

Takeshi Yoshizawa

Received April 30, 2018.   Published online September 18, 2019.

Abstract:  We consider a generalization of the notion of torsion theory, which is associated with a Serre subcategory over a commutative Noetherian ring. In 2008 Aghapournahr and Melkersson investigated the question of when local cohomology modules belong to a Serre subcategory of the module category. In their study, the notion of Melkersson condition was defined as a suitable condition in local cohomology theory. One of our purposes in this paper is to show how naturally the concept of Melkersson condition appears in the context of torsion theories.
Keywords:  Melkersson condition; Serre subcategory; torsion theory
Classification MSC:  13C60, 13D30
DOI:  10.21136/CMJ.2019.0193-18

PDF available at:  Springer   Institute of Mathematics CAS

References:
[1] M. Aghapournahr, L. Melkersson: Local cohomology and Serre subcategories. J. Algebra 320 (2008), 1275-1287. DOI 10.1016/j.jalgebra.2008.04.002 | MR 2427643 | Zbl 1153.13014
[2] A. Beligiannis, I. Reiten: Homological and homotopical aspects of torsion theories. Mem. Am. Math. Soc. 883 (2007), 207 pages. DOI 10.1090/memo/0883 | MR 2327478 | Zbl 1124.18005
[3] S. E. Dickson: A torsion theory for Abelian categories. Trans. Am. Math. Soc. 121 (1966), 223-235. DOI 10.2307/1994341 | MR 0191935 | Zbl 0138.01801
[4] P. Gabriel: Des catégories abéliennes. Bull. Soc. Math. Fr. 90 (1962), 323-448. (In French.) DOI 10.24033/bsmf.1583 | MR 0232821 | Zbl 0201.35602
[5] J. Lambek: Torsion Theories, Additive Semantics, and Rings of Quotients. Lecture Notes in Mathematics 177, Springer, Berlin (1971). DOI 10.1007/BFb0061029 | MR 0284459 | Zbl 0213.31601
[6] B. Stenström: Rings and Modules of Quotients. Lecture Notes in Mathematics 237, Springer, Berlin (1971). DOI 10.1007/BFb0059904 | MR 0325663 | Zbl 0229.16003
[7] B. Stenström: Rings of Quotients. An Introduction to Methods of Ring Theory. Die Grundlehren der Mathematischen Wissenschaften 217, Springer, Berlin (1975). DOI 10.1007/978-3-642-66066-5 | MR 0389953 | Zbl 0296.16001
[8] T. Yoshizawa: Subcategories of extension modules by Serre subcategories. Proc. Am. Math. Soc. 140 (2012), 2293-2305. DOI 10.1090/S0002-9939-2011-11108-0 | MR 2898693 | Zbl 1273.13018
[9] T. Yoshizawa: On the closedness of taking injective hulls of several Serre subcategories. Commun. Algebra 45 (2017), 4846-4854. DOI 10.1080/00927872.2017.1284226 | MR 3670355 | Zbl 1390.13040

Affiliations:   Takeshi Yoshizawa, National Institute of Technology, Toyota College 2-1 Eiseicho, Toyota, Aichi, Japan, 471-8525, e-mail: tyoshiza@toyota-ct.ac.jp


 
PDF available at: