Czechoslovak Mathematical Journal, first online, pp. 1-14


Derived equivalences between generalized matrix algebras

QingHua Chen, HongJin Liu

Received April 18, 2018.   Published online September 18, 2019.

Abstract:  We construct derived equivalences between generalized matrix algebras. We record several corollaries. In particular, we show that the $n$-replicated algebras of two derived equivalent, finite-dimensional algebras are also derived equivalent.
Keywords:  derived equivalence; tilting complex; generalized matrix algebra
Classification MSC:  16G10, 16E35, 16S50
DOI:  10.21136/CMJ.2019.0196-18

PDF available at:  Springer   Institute of Mathematics CAS

References:
[1] H. Asashiba: A covering technique for derived equivalence. J. Algebra 191 (1997), 382-415. DOI 10.1006/jabr.1997.6906 | MR 1444505 | Zbl 0871.16006
[2] I. Assem, T. Brüstle, R. Schiffler, G. Todorov: Cluster categories and duplicated algebras. J. Algebra 305 (2006), 548-561. DOI 10.1016/j.jalgebra.2005.12.002 | MR 2264143 | Zbl 1114.16010
[3] I. Assem, T. Brüstle, R. Schiffler, G. Todorov: $m$-cluster categories and $m$-replicated algebras. J. Pure Appl. Algebra 212 (2008), 884-901. DOI 10.1016/j.jpaa.2007.07.013 | MR 2363499 | Zbl 1143.16015
[4] I. Assem, D. Simson, A. Skowroński: Elements of the Representation Theory of Associative Algebras. Vol. 1. Techniques of Representation Theory. London Mathematical Society Student Texts 65, Cambridge University Press, Cambridge (2006). DOI 10.1017/CBO9780511614309 | MR 2197389 | Zbl 1092.16001
[5] E. Enochs, B. Torrecillas: Flat covers over formal triangular matrix rings and minimal Quillen factorizations. Forum Math. 23 (2011), 611-624. DOI 10.1515/FORM.2011.021 | MR 2805196 | Zbl 1227.16002
[6] N. Gao, C. Psaroudakis: Gorenstein homological aspects of monomorphism categories via Morita rings. Algebr. Represent. Theory 20 (2017), 487-529. DOI 10.1007/s10468-016-9652-1 | MR 3638357 | Zbl 1382.16008
[7] E. L. Green: On the representation theory of rings in matrix form. Pac. J. Math. 100 (1982), 123-138. DOI 10.2140/pjm.1982.100.123 | MR 0661444 | Zbl 0502.16016
[8] E. L. Green, C. Psaroudakis: On Artin algebras arising from Morita contexts. Algebr. Represent. Theory 17 (2014), 1485-1525. DOI 10.1007/s10468-013-9457-4 | MR 3260907 | Zbl 1317.16003
[9] D. Happel, U. Seidel: Piecewise hereditary Nakayama algebras. Algebr. Represent. Theory 13 (2010), 693-704. DOI 10.1007/s10468-009-9169-y | MR 2736030 | Zbl 1217.16015
[10] E. Herscovich, A. Solotar: Derived invariance of Hochschild-Mitchell (co)homology and one-point extensions. J. Algebra 315 (2007), 852-873. DOI 10.1016/j.jalgebra.2007.05.014 | MR 2351897 | Zbl 1184.18013
[11] B. Iversen: Cohomology of Sheaves. Universitext, Springer, Berlin (1986). DOI 10.1007/978-3-642-82783-9 | MR 0842190 | Zbl 1272.55001
[12] S. Ladkani: On derived equivalences of lines, rectangles and triangles. J. Lond. Math. Soc., II. Ser. 87 (2013), 157-176. DOI 10.1112/jlms/jds034 | MR 3022711 | Zbl 1284.16008
[13] L. Li: Stratifications of finite directed categories and generalized APR tilting modules. Commun. Algebra 43 (2015), 1723-1741. DOI 10.1080/00927872.2013.879157 | MR 3316816 | Zbl 1360.18003
[14] L. Li: Derived equivalences between triangular matrix algebras. Commun. Algebra 46 (2018), 615-628. DOI 10.1080/00927872.2017.1327051 | MR 3764883 | Zbl 06875436
[15] D. Miličić: Lectures on Derived Categories. Available at http://www.math.utah.edu/~milicic/Eprints/dercat.pdf
[16] J.-I. Miyachi: Extensions of rings and tilting complexes. J. Pure Appl. Algebra 105 (1995), 183-194. DOI 10.1016/0022-4049(94)00145-6 | MR 1365875 | Zbl 0846.16005
[17] J. Rickard: Derived categories and stable equivalence. J. Pure Appl. Algebra 61 (1989), 303-317. DOI 10.1016/0022-4049(89)90081-9 | MR 1027750 | Zbl 0685.16016
[18] J. Rickard: Morita theory for derived categories. J. Lond. Math. Soc., II. Ser. 39 (1989), 436-456. DOI 10.1112/jlms/s2-39.3.436 | MR 1002456 | Zbl 0642.16034
[19] J. Rickard: Derived equivalences as derived functors. J. Lond. Math. Soc., II. Ser. 43 (1991), 37-48. DOI 10.1112/jlms/s2-43.1.37 | MR 1099084 | Zbl 0683.16030
[20] C. Xi: Constructions of derived equivalences for algebras and rings. Front. Math. China 12 (2017), 1-18. DOI 10.1007/s11464-016-0593-0 | MR 3569663 | Zbl 1396.18010
[21] S. Zhang: Partial tilting modules over $m$-replicated algebras. J. Algebra 323 (2010), 2538-2546. DOI 10.1016/j.jalgebra.2010.02.002 | MR 2602394 | Zbl 1242.16015

Affiliations:   QingHua Chen, College of Mathematics and Informatics, Fujian Normal University, No. 1, University Town KeJi Road, Fuzhou 350117, P. R. China, e-mail: cqhmath@fjnu.edu.cn; HongJin Liu (corresponding author), College of Mathematics and Informatics, Fujian Normal University, No. 1, University Town KeJi Road, Fuzhou 350117, P. R. China, and School of Information Engineering, Longyan University, No. 1, DongXiao North Road, Longyan 364012, P. R. China, e-mail: hjliu005@sina.com


 
PDF available at: