Czechoslovak Mathematical Journal, first online, pp. 1-8


On TI-subgroups and QTI-subgroups of finite groups

Ruifang Chen, Xianhe Zhao

Received April 21, 2018.   Published online September 16, 2019.

Abstract:  Let $G$ be a group. A subgroup $H$ of $G$ is called a TI-subgroup if $H\cap H^g=1$ or $H$ for every $g\in G$ and $H$ is called a QTI-subgroup if $C_G(x) \leq N_G(H)$ for any $1\neq x\in H$. In this paper, a finite group in which every nonabelian maximal is a TI-subgroup (QTI-subgroup) is characterized.
Keywords:  TI-subgroup; QTI-subgroup; maximal subgroup; Frobenius group; solvable group
Classification MSC:  20D10
DOI:  10.21136/CMJ.2019.0203-18

PDF available at:  Springer   Institute of Mathematics CAS

References:
[1] Z. Arad, W. Herfort: Classification of finite groups with a CC-subgroup. Commun. Algebra 32 (2004), 2087-2098. DOI 10.1081/AGB-120037209 | MR 2099578 | Zbl 1070.20023
[2] D. Gorenstein: Finite Groups. Harper's Series in Modern Mathematics, Harper & Row, New York (1968). MR 0231903 | Zbl 0185.05701
[3] X. Guo, S. Li, P. Flavell: Finite groups whose abelian subgroups are TI-subgroups. J. Algebra 307 (2007), 565-569. DOI 10.1016/j.jalgebra.2006.10.001 | MR 2275363 | Zbl 1116.20014
[4] B. Huppert: Endliche Gruppen I. Die Grundlehren der Mathematischen Wissenschaften 134, Springer, Berlin (1967). (In German.) DOI 10.1007/978-3-642-64981-3 | MR 0224703 | Zbl 0217.07201
[5] H. Kurzweil, B. Stellmacher: The Theory of Finite Groups. An Introduction. Universitext, Springer, New York (2004). DOI 10.1007/b97433 | MR 2014408 | Zbl 1047.20011
[6] S. Li: Finite non-nilpotent groups all of whose second maximal subgroups are TI-groups. Math. Proc. R. Ir. Acad. 100A (2000), 65-71. MR 1882200 | Zbl 0978.20012
[7] J. Lu, X. Guo: Finite groups all of whose second maximal subgroups are QTI-subgroups. Commun. Algebra 40 (2012), 3726-3732. DOI 10.1080/00927872.2011.594135 | MR 2982892 | Zbl 1259.20021
[8] J. Lu, L. Pang: A note on TI-subgroups of finite groups. Proc. Indian Acad. Sci., Math. Sci. 122 (2012), 75-77. DOI 10.1007/s12044-012-0055-x | MR 2909585 | Zbl 1272.20018
[9] J. Lu, L. Pang, X. Zhong: Finite groups with non-nilpotent maximal subgroups. Monatsh. Math. 171 (2013), 425-431. DOI 10.1007/s00605-012-0432-7 | MR 3090801 | Zbl 1277.20017
[10] G. Qian, F. Tang: Finite groups all of whose abelian subgroups are QTI-subgroups. J. Algebra 320 (2008), 3605-3611. DOI 10.1016/j.jalgebra.2008.08.009 | MR 2455518 | Zbl 1178.20014
[11] D. J. S. Robinson: A Course in the Theory of Groups. Graduate Texts in Mathematics 80, Springer, New York (1996). DOI 10.1007/978-1-4419-8594-1 | MR 1357169 | Zbl 0836.20001
[12] J. Shi, C. Zhang: Finite groups in which all nonabelian subgroups are TI-subgroups. J. Algebra Appl. 13 (2014), Article ID 1350074, 3 pages. DOI 10.1142/S0219498813500746 | MR 3096855 | Zbl 1285.20020
[13] G. Walls: Trivial intersection groups. Arch. Math. 32 (1979), 1-4. DOI 10.1007/BF01238459 | MR 0532840 | Zbl 0388.20011

Affiliations:   Ruifang Chen (corresponding author), Xianhe Zhao, School of Mathematics and Information Science, Henan Normal University, N. 46, East of Construction Road, Xinxiang, Henan, 453007, P. R. China, e-mail: fang119128@126.com, zhaoxianhe989@163.com


 
PDF available at: