Czechoslovak Mathematical Journal, first online, pp. 1-12


Nonexistence of entire positive solution for a conformal $k$-Hessian inequality

Feida Jiang, Saihua Cui, Gang Li

Received June 18, 2018.   Published online November 29, 2019.

Abstract:  In this paper, we study the nonexistence of entire positive solution for a conformal $k$-Hessian inequality in $\mathbb{R}^n$ via the method of proof by contradiction.
Keywords:  conformal Hessian inequality; entire positive solution
Classification MSC:  35J60, 35B08, 35B09
DOI:  10.21136/CMJ.2019.0289-18

PDF available at:  Springer   Institute of Mathematics CAS

References:
[1] T. Aubin: Équations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire. J. Math. Pur. Appl., IX. Sér. 55 (1976), 269-296. (In French.) MR 0431287 | Zbl 0336.53033
[2] T. Aubin: Problèmes isopérimétriques et espaces de Sobolev. J. Diff. Geom. 11 (1976), 573-598. (In French.) DOI 10.4310/jdg/1214433725 | MR 0448404 | Zbl 0371.46011
[3] J. Bao, X. Ji, H. Li: Existence and nonexistence theorem for entire subsolutions of $k$-Yamabe type equations. J. Differ. Equations 253 (2012), 2140-2160. DOI 10.1016/j.jde.2012.06.018 | MR 2946967 | Zbl 1260.35044
[4] H. Brezis: Semilinear equations in $\mathbb{R}^N$ without condition at infinity. Appl. Math. Optimization 12 (1984), 271-282. DOI 10.1007/BF01449045 | MR 0768633 | Zbl 0562.35035
[5] L. Caffarelli, B. Gidas, J. Spruck: Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth. Commun. Pure Appl. Math. 42 (1989), 271-297. DOI 10.1002/cpa.3160420304 | MR 0982351 | Zbl 0702.35085
[6] L. Caffarelli, L. Nirenberg, J. Spruck: The Dirichlet problem for nonlinear second order elliptic equations III: Functions of the eigenvalues of the Hessian. Acta Math. 155 (1985), 261-301. DOI 10.1007/BF02392544 | MR 0806416 | Zbl 0654.35031
[7] B. Gidas, J. Spruck: Global and local behavior of positive solutions of nonlinear elliptic equations. Commun. Pure Appl. Math. 34 (1981), 525-598. DOI 10.1002/cpa.3160340406 | MR 0615628 | Zbl 0465.35003
[8] X. Ji, J. Bao: Necessary and sufficient conditions on solvability for Hessian inequalities. Proc. Am. Math. Soc. 138 (2010), 175-188. DOI 10.1090/S0002-9939-09-10032-1 | MR 2550182 | Zbl 1180.35234
[9] F. Jiang, N. S. Trudinger: Oblique boundary value problems for augmented Hessian equations I. Bull. Math. Sci. 8 (2018), 353-411. DOI 10.1007/s13373-018-0124-2 | MR 3826768 | Zbl 1411.35116
[10] F. Jiang, N. S. Trudinger, X.-P. Yang: On the Dirichlet problem for a class of augmented Hessian equations. J. Differ. Equations 258 (2015), 1548-1576. DOI 10.1016/j.jde.2014.11.005 | MR 3295592 | Zbl 1309.35027
[11] Q. Jin, Y. Li, H. Xu: Nonexistence of positive solutions for some fully nonlinear elliptic equations. Methods Appl. Anal. 12 (2005), 441-449. DOI 10.4310/MAA.2005.v12.n4.a5 | MR 2258318 | Zbl 1143.35322
[12] J. B. Keller: On solutions of $\Delta u=f(u)$. Commun. Pure Appl. Math. 10 (1957), 503-510. DOI 10.1002/cpa.3160100402 | MR 0091407 | Zbl 0090.31801
[13] A. Li, Y. Y. Li: On some conformally invariant fully nonlinear equations II: Liouville, Harnack and Yamabe. Acta Math. 195 (2005), 117-154. DOI 10.1007/BF02588052 | MR 2233687 | Zbl 1216.35038
[14] G. M. Lieberman: Second Order Parabolic Differential Equations. World Scientific Publishing, Singapore (1996). DOI 10.1142/3302 | MR 1465184 | Zbl 0884.35001
[15] C. Loewner, L. Nirenberg: Partial differential equations invariant under conformal or projective transformations. Contributions to Analysis: A Collection of Papers Dedicated to Lipman Bers. Academic Press, New York (1974), 245-272. MR 0358078 | Zbl 0298.35018
[16] R. Osserman: On the inequality $\Delta u\geq f(u)$. Pac. J. Math. 7 (1957), 1641-1647. DOI 10.2140/pjm.1957.7.1641 | MR 0098239 | Zbl 0083.09402
[17] Q. Ou: Nonexistence results for Hessian inequality. Methods Appl. Anal. 17 (2010), 213-224. DOI 10.4310/MAA.2010.v17.n2.a5 | MR 2763578 | Zbl 1211.35293
[18] Q. Ou: Singularities and Liouville theorems for some special conformal Hessian equations. Pac. J. Math. 266 (2013), 117-128. DOI 10.2140/pjm.2013.266.117 | MR 3105779 | Zbl 1284.35179
[19] Q. Ou: A note on nonexistence of conformal Hessian inequalities. Adv. Math., Beijing 46 (2017), 154-158. MR 3627002 | Zbl 1389.26062
[20] R. Schoen: Conformal deformation of a Riemannian metric to constant scalar curvature. J. Differ. Geom. 20 (1984), 479-495. DOI 10.4310/jdg/1214439291 | MR 0788292 | Zbl 0576.53028
[21] W. Sheng, N. S. Trudinger, X.-J. Wang: The $k$-Yamabe problem. Surv. Differ. Geom. 17 (2012), 427-457. DOI 10.4310/SDG.2012.v17.n1.a10 | MR 3076067 | Zbl 1382.53013
[22] N. S. Trudinger: Remarks concerning the conformal deformation of Riemannian structures on compact manifolds. Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat., III. Ser. 22 (1968), 265-274. MR 0240748 | Zbl 0159.23801
[23] N. S. Trudinger: Recent developments in elliptic partial differential equations of Monge-Ampère type. International Congress of Mathematicians. Vol. III. European Mathematical Society, Zürich (2006), 291-302. DOI 10.4171/022-3/15 | MR 2275682 | Zbl 1130.35058
[24] J. A. Viaclovsky: Conformal geometry, contact geometry, and the calculus of variations. Duke Math. J. 101 (2000), 283-316. DOI 10.1215/S0012-7094-00-10127-5 | MR 1738176 | Zbl 0990.53035
[25] H. Yamabe: On a deformation of Riemannian structures on compact manifolds. Osaka Math. J. 12 (1960), 21-37. MR 0125546 | Zbl 0096.37201

Affiliations:   Feida Jiang (corresponding author), School of Science, Nanjing University of Science and Technology, Nanjing 210094, P. R. China, e-mail: jfd2001@163.com; Saihua Cui, Gang Li, College of Mathematics and Statistics, Nanjing University of Information Science and Technology, No.219, Ningliu Road, Nanjing 210044, P. R. China, e-mail: Cuisaihua2017@163.com, Ligang@nuist.edu.cn


 
PDF available at: