Czechoslovak Mathematical Journal, first online, pp. 1-13


Characterizations of partial isometries and two special kinds of EP elements

Ruju Zhao, Hua Yao, Junchao Wei

Received August 26, 2018.   Published online December 12, 2019.

Abstract:  We give some sufficient and necessary conditions for an element in a ring to be an EP element, partial isometry, normal EP element and strongly EP element by using solutions of certain equations.
Keywords:  EP element; partial isometry; normal EP element; strongly EP element; solutions of equation
Classification MSC:  15A09, 16U99, 16W10
DOI:  10.21136/CMJ.2019.0389-18

PDF available at:  Springer   Institute of Mathematics CAS

References:
[1] O. M. Baksalary, G. P. H. Styan, G. Trenkler: On a matrix decomposition of Hartwig and Spindelböck. Linear Algebra Appl. 430 (2009), 2798-2812. DOI 10.1016/j.laa.2009.01.015 | MR 2509859 | Zbl 1180.15004
[2] O. M. Baksalary, G. Trenkler: Characterizations of EP, normal, and Hermitian matrices. Linear Multilinear Algebra 56 (2008), 299-304. DOI 10.1080/03081080600872616 | MR 2384656 | Zbl 1151.15023
[3] A. Ben-Israel, T. N. E. Greville: Generalized Inverses: Theory and Applications. CMS Books in Mathematics/Ouvrages de Mathèmatiques de la SMC 15, Springer, New York (2003). DOI 10.1007/b97366 | MR 1987382 | Zbl 1026.15004
[4] W. Chen: On EP elements, normal elements and partial isometries in rings with involution. Electron. J. Linear Algebra 23 (2012), 553-561. DOI 10.13001/1081-3810.1540 | MR 2946809 | Zbl 1266.16044
[5] S. Cheng, Y. Tian: Two sets of new characterizations for normal and EP matrices. Linear Algebra Appl. 375 (2003), 181-195. DOI 10.1016/S0024-3795(03)00650-5 | MR 2013464 | Zbl 1054.15022
[6] R. Harte, M. Mbekhta: On generalized inverses in $C^*$-algebras. Stud. Math. 103 (1992), 71-77. DOI 10.4064/sm-103-1-71-77 | MR 1184103 | Zbl 0810.46062
[7] R. E. Hartwig, K. Spindelböck: Matrices for which $A^*$ and $A^{\dagger}$ commute. Linear Multilinear Algebra 14 (1983), 241-256. DOI 10.1080/03081088308817561 | MR 0718953 | Zbl 0525.15006
[8] J. J. Koliha, D. Djordjević, D. Cvetković: Moore-Penrose inverse in rings with involution. Linear Algebra Appl. 426 (2007), 371-381. DOI 10.1016/j.laa.2007.05.012 | MR 2350664 | Zbl 1130.46032
[9] D. Mosić, D. S. Djordjević: Moore-Penrose-invertible normal and Hermitian elements in rings. Linear Algebra Appl. 431 (2009), 732-745. DOI 10.1016/j.laa.2009.03.023 | MR 2535546 | Zbl 1186.16046
[10] D. Mosić, D. S. Djordjević: Partial isometries and EP elements in rings with involution. Electron. J. Linear Algebra 18 (2009), 761-772. DOI 10.13001/1081-3810.1343 | MR 2578068 | Zbl 1192.16039
[11] D. Mosić, D. S. Djordjević: Further results on partial isometries and EP elements in rings with involution. Math. Comput. Modelling 54 (2011), 460-465. DOI 10.1016/j.mcm.2011.02.035 | MR 2801901 | Zbl 1225.15008
[12] D. Mosić, D. S. Djordjević: New characterizations of EP, generalized normal and generalized Hermitian elements in rings. Appl. Math. Comput. 218 (2012), 6702-6710. DOI 10.1016/j.amc.2011.12.030 | MR 2880325 | Zbl 1251.15008
[13] D. Mosić, D. S. Djordjević, J. J. Koliha: EP elements in rings. Linear Algebra Appl. 431 (2009), 527-535. DOI 10.1016/j.laa.2009.02.032 | MR 2535530 | Zbl 1186.16047
[14] R. Penrose: A generalized inverse for matrices. Proc. Camb. Philos. Soc. 51 (1955), 406-413. DOI 10.1017/S0305004100030401 | MR 0069793 | Zbl 0065.24603
[15] S. Xu, J. Chen, J. Benítez: EP elements in rings with involution. Available at https://arxiv.org/abs/1602.08184 (2017), 18 pages.

Affiliations:   Ruju Zhao (corresponding author), Hua Yao , Junchao Wei, School of Mathematical Science, Yangzhou University, 180, Siwangting Road, Hanjiang District, Yangzhou, Jiangsu 225002, P. R. China, e-mail: zrj0115@126.com


 
PDF available at: