Czechoslovak Mathematical Journal, Vol. 69, No. 3, pp. 837-851, 2019


Weak-strong uniqueness for Navier-Stokes/Allen-Cahn system

Radim Hošek, Václav Mácha

Received November 13, 2017.   Published online February 27, 2019.

Abstract:  The coupled Navier-Stokes/Allen-Cahn system is a simple model to describe phase separation in two-component systems interacting with an incompressible fluid flow. We demonstrate the weak-strong uniqueness result for this system in a bounded domain in three spatial dimensions which implies that when a strong solution exists, then a weak solution emanating from the same data coincides with the strong solution on its whole life span. The proof of given assertion relies on a form of a relative entropy method.
Keywords:  Allen-Cahn system; weak-strong uniqueness
Classification MSC:  35A02, 35B65
DOI:  10.21136/CMJ.2019.0520-17


References:
[1] J. Březina, O. Kreml, V. Mácha: Dimension reduction for the full Navier-Stokes-Fourier system. J. Math. Fluid Mech. 19 (2017), 659-683. DOI 10.1007/s00021-016-0301-6 | MR 3714498 | Zbl 1386.35335
[2] C. M. Dafermos: The second law of thermodynamics and stability. Arch. Ration. Mech. Anal. 70 (1979), 167-179. DOI 10.1007/BF00250353 | MR 0546634 | Zbl 0448.73004
[3] B. Ducomet, Š. Nečasová: Diffusion limits in a model of radiative flow. Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 61 (2015), 17-59. DOI 10.1007/s11565-014-0214-3 | MR 3343442 | Zbl 1331.35276
[4] E. Feireisl, B. J. Jin, A. Novotný: Inviscid incompressible limits of strongly stratified fluids. Asymptotic Anal. 89 (2014), 307-329. DOI 10.3233/ASY-141231 | MR 3266143 | Zbl 1304.35540
[5] E. Feireisl, R. Klein, A. Novotný, E. Zatorska: On singular limits arising in the scale analysis of stratified fluid flows. Math. Models Methods Appl. Sci. 26 (2016), 419-443. DOI 10.1142/S021820251650007X | MR 3458246 | Zbl 1339.35210
[6] E. Feireisl, A. Novotný: Weak-strong uniqueness property for the full Navier-Stokes-Fourier system. Arch. Ration. Mech. Anal. 204 (2012), 683-706. DOI 10.1007/s00205-011-0490-3 | MR 2909912 | Zbl 1285.76034
[7] F.-H. Lin, C. Liu: Nonparabolic dissipative systems modeling the flow of liquid crystals. Commun. Pure Appl. Math. 48 (1995), 501-537. DOI 10.1002/cpa.3160480503 | MR 1329830 | Zbl 0842.35084
[8] H. Sohr: The Navier-Stokes Equations. An Elementary Functional Analytic Approach. Birkhäuser Advanced Texts, Birkhäuser, Basel (2001). DOI 10.1007/978-3-0348-8255-2 | MR 1928881 | Zbl 0983.35004
[9] L. Zhao, B. Guo, H. Huang: Vanishing viscosity limit for a coupled Navier-Stokes/Allen-Cahn system. J. Math. Anal. Appl. 384 (2011), 232-245. DOI 10.1016/j.jmaa.2011.05.042 | MR 2825177 | Zbl 1231.35185

Affiliations:   Radim Hošek, Václav Mácha, Institute of Mathematics of the Czech Academy of Sciences, Žitná 25, 115 67 Praha 1, Czech Republic, e-mail: hosek@math.cas.cz, macha@math.cas.cz


 
PDF available at: