Czechoslovak Mathematical Journal, first online, pp. 1-13


Inverse eigenvalue problem of cell matrices

Sreyaun Khim, Kijti Rodtes

Received December 20, 2017.   Published online February 22, 2019.

Abstract:  We consider the problem of reconstructing an $n \times n$ cell matrix $D(\vec{x})$ constructed from a vector $\vec{x} = (x_1, x_2,\dots, x_n)$ of positive real numbers, from a given set of spectral data. In addition, we show that the spectra of cell matrices $D(\vec{x})$ and $D(\pi(\vec{x}))$ are the same for every permutation $\pi\in S_n$.
Keywords:  cell matrix; inverse eigenvalue problem; Euclidean distance matrix
Classification MSC:  15B10, 15B05, 15B48, 35P30, 35P20
DOI:  10.21136/CMJ.2019.0579-17

PDF available at:  Springer   Institute of Mathematics CAS

References:
[1] M. T. Chu: Inverse eigenvalue problems. SIAM Rev. 40 (1998), 1-39. DOI 10.1137/S0036144596303984 | MR 1612561 | Zbl 0915.15008
[2] M. T. Chu, G. H. Golub: Structured inverse eigenvalue problems. Acta Numerica 11 (2002), 1-71. DOI 10.1017/S0962492902000016 | MR 2008966 | Zbl 1105.65326
[3] K. B. Gyamfi: Solution of Inverse Eigenvalue Problem of Certain Singular Hermitian Matrices. Doctoral dissertation, Kwame Nkrumah University of Science and Technology (2012).
[4] G. Jaklič, J. Modic: On properties of cell matrices. Appl. Math. Comput. 216 (2010), 2016-2023. DOI 10.1016/j.amc.2010.03.032 | MR 2647070 | Zbl 1203.15022
[5] H. Kurata, P. Tarazaga: The cell matrix closest to a given Euclidean distance matrix. Linear Algebra Appl. 485 (2015), 194-207. DOI 10.1016/j.laa.2015.07.030 | MR 3394144 | Zbl 1323.15020
[6] A. M. Nazari, F. Mahdinasab: Inverse eigenvalue problem of distance matrix via orthogonal matrix. Linear Algebra Appl. 450 (2014), 202-216. DOI 10.1016/j.laa.2014.02.017 | MR 3192478 | Zbl 1302.15016
[7] N. Radwan: An inverse eigenvalue problem for symmetric and normal matrices. Linear Algebra Appl. 248 (1996), 101-109. DOI 10.1016/0024-3795(95)00162-X | MR 1416452 | Zbl 0865.15008
[8] I. J. Schoenberg: Metric spaces and positive definite functions. Trans. Am. Math. Soc. 44 (1938), 522-536. DOI 10.1090/S0002-9947-1938-1501980-0 | MR 1501980 | Zbl 0019.41502
[9] P. Tarazaga, H. Kurata: On cell matrices: a class of Euclidean distance matrices. Appl. Math. Comput. 238 (2014), 468-474. DOI 10.1016/j.amc.2014.04.026 | MR 3209649 | Zbl 1334.15090
[10] Z. Wang, B. Zhong: An inverse eigenvalue problem for Jacobi matrices. Math. Probl. Eng. 2011 (2011), Article ID 571781, 11 pages. DOI 10.1155/2011/571781 | MR 2799869 | Zbl 1235.15011

Affiliations:   Sreyaun Khim, Department of Mathematics, Faculty of Science, Naresuan University, 99 Moo 9 Phitsanulok-Nakhonsawan Road Tambon Tapho, Muang, Phitsanulok 65000, Thailand, e-mail: sreyaun.khim@yahoo.com; Kijti Rodtes, Department of Mathematics, Faculty of Science, Naresuan University, Research Center for Academic Excellence in Mathematics, 99 Moo 9 Phitsanulok-Nakhonsawan Road Tambon Tapho, Muang, Phitsanulok 65000, Thailand, e-mail: kijtir@nu.ac.th


 
PDF available at: