Czechoslovak Mathematical Journal, Vol. 70, No. 3, pp. 605-629, 2020


On sectional Newtonian graphs

Zening Fan, Suo Zhao

Received February 7, 2020.   Published online August 17, 2020.

Abstract:  In this paper, we introduce the so-called sectional Newtonian graphs for univariate complex polynomials, and study some properties of those graphs. In particular, we list all possible sectional Newtonian graphs when the degrees of the polynomials are less than five, and also show that every stable gradient graph can be realized as a polynomial sectional Newtonian graph.
Keywords:  sectional Newtonian graph; level set; partition
Classification MSC:  05C75, 53C43
DOI:  10.21136/CMJ.2020.0049-20

PDF available at:  Springer   Institute of Mathematics CAS

References:
[1] P. Duren: Harmonic Mappings in the Plane. Cambridge Tracts in Mathematics 156. Cambridge University Press, Cambridge (2004). DOI 10.1017/CBO9780511546600 | MR 2048384 | Zbl 1055.31001
[2] P. Griffths, J. Harris: Principles of Algebraic Geometry. Wiley Classics Library. John Wiley & Sons, New York (1994). DOI 10.1002/9781118032527 | MR 1288523 | Zbl 0836.14001
[3] D. Huybrechts: Complex Geometry: An Introduction. Universitext. Springer, Berlin (2005). DOI 10.1007/b137952 | MR 2093043 | Zbl 1055.14001
[4] H. T. Jongen, P. Jonker, F. Twilt: On the classification of plane graphs representing structurally stable rational Newton flows. J. Comb. Theory, Ser. B 51 (1991), 256-270. DOI 10.1016/0095-8956(91)90041-H | MR 1099075 | Zbl 0725.05069
[5] J. Kahn: Newtonian graphs for families of complex polynomials. J. Complexity 7 (1991), 425-442. DOI 10.1016/0885-064X(91)90029-W | MR 1143970 | Zbl 0773.05055
[6] D. Kozen, K. Stefánsson: Computing the Newtonian graph. J. Symb. Comput. 24 (1997), 125-136. DOI 10.1006/jsco.1997.0118 | MR 1476256 | Zbl 0885.65055
[7] M. Shub, D. Tischler, R. F. Williams: The Newtonian graph of a complex polynomial. SIAM J. Math. Anal. 19 (1988), 246-256. DOI 10.1137/0519018 | MR 0924558 | Zbl 0653.58013
[8] S. Smale: On the efficiency of algorithms of analysis. Bull. Am. Math. Soc., New Ser. 13 (1985), 87-121. DOI 10.1090/S0273-0979-1985-15391-1 | MR 0799791 | Zbl 0592.65032
[9] K. Stefánsson: Newtonian Graphs, Riemann Surfaces and Computation. PhD Thesis. Cornell University, Ann Arbor (1995). MR 2693724

Affiliations:   Zening Fan, College of Mathematics, Sichuan University, No.24 South Section 1 Yihuan Road, Chengdu 610064, P. R. China, e-mail: zeningfan@126.com; Suo Zhao (corresponding author), Jiajia Research Center, Shanghai Yuanlu Jiajia Information & Technology Co., Ltd., No.1166 Shuangqiao Road, Shanghai 201208, P. R. China, e-mail: saaki@163.com


 
PDF available at: