Czechoslovak Mathematical Journal, Vol. 70, No. 4, pp. 935-951, 2020


Formal deformations and principal series representations of ${\rm SL}(2,{\mathbb R})$ and ${\rm SL}(2,{\mathbb C})$

Benjamin Cahen

Received February 3, 2019.   Published online July 1, 2020.

Abstract:  In this note, we study formal deformations of derived representations of the principal series representations of ${\rm SL}(2,{\mathbb R})$. In particular, we recover all the representations of the derived principal series by deforming one of them. Similar results are also obtained for ${\rm SL}(2,{\mathbb C})$.
Keywords:  deformation of representation; Lie algebra; Chevalley-Eilenberg cohomology; Moyal star product; Weyl correspondence; minimal realization
Classification MSC:  17B10, 17B20, 17B56, 22E46, 53D55


References:
[1] D. Arnal, H. Benamor, B. Cahen: Minimal realizations of classical simple Lie algebras through deformations. Ann. Fac. Sci. Toulouse, VI. Sér., Math. 7 (1998), 169-184. DOI 10.5802/afst.894 | MR 1656166 | Zbl 0923.17010
[2] B. Cahen: Construction par déformation de réalisations minimales d'une algèbre de Lie simple de type $G_2$. C. R. Acad. Sci., Paris, Sér. I 323 (1996), 853-857 (In French.); corrigendum ibid. 355 (2017), 485. MR 1414547 | Zbl 0864.17010
[3] B. Cahen: Deformation program for principal series representations. Lett. Math. Phys. 36 (1996), 65-75. DOI 10.1007/BF00403252 | MR 1371298 | Zbl 0843.22020
[4] B. Cahen: Déformations formelles de certaines représentations de l'algèbre de Lie d'un groupe de Poincaré généralisé. Ann. Math. Blaise Pascal 8 (2001), 17-37. (In French.) DOI 10.5802/ambp.133 | MR 1863645 | Zbl 0987.22008
[5] B. Cahen: Weyl quantization for semidirect products. Differ. Geom. Appl. 25 (2007), 177-190. DOI 10.1016/j.difgeo.2006.08.005 | MR 2311733 | Zbl 1117.81087
[6] B. Cahen: Berezin quantization and holomorphic representations. Rend. Semin. Mat. Univ. Padova 129 (2013), 277-297. DOI 10.4171/RSMUP/129-16 | MR 3090642 | Zbl 1272.22007
[7] B. Cahen: A construction by deformation of unitary irreducible representations of $SU(1,n)$ and $SU(n+1)$. J. Algebra Appl. 18 (2019), Article ID 1950125, 15 pages. DOI 10.1142/S0219498819501251 | MR 3977786 | Zbl 07096440
[8] M. Combescure, D. Robert: Coherent States and Applications in Mathematical Physics. Theoretical and Mathematical Physics. Springer, Berlin (2012). DOI 10.1007/978-94-007-0196-0 | MR 2952171 | Zbl 1243.81004
[9] A. Fialowski: Deformations in mathematics and physics. Int. J. Theor. Phys. 47 (2008), 333-337. DOI 10.1007/s10773-007-9454-7 | MR 2396768 | Zbl 1140.81416
[10] A. Fialowski, M. de Montigny: Deformations and contractions of Lie algebras. J. Phys. A, Math. Gen. 38 (2005), 6335-6349. DOI 10.1088/0305-4470/38/28/006 | MR 2166626 | Zbl 1073.22012
[11] A. Fialowski, M. Penkava: The moduli space of 4-dimensional nilpotent complex associative algebras. Linear Algebra Appl. 457 (2014), 408-427. DOI 10.1016/j.laa.2014.05.014 | MR 3230454 | Zbl 1294.14008
[12] G. B. Folland: Harmonic Analysis in Phase Space. Annals of Mathematics Studies 122. Princeton University Press, Princeton (1989). DOI 10.1515/9781400882427 | MR 0983366 | Zbl 0682.43001
[13] M. Gerstenhaber: On the deformation of rings and algebras. Ann. Math. 79 (1964), 59-103. DOI 10.2307/1970484 | MR 0171807 | Zbl 0123.03101
[14] A. Guichardet: Cohomologie des Groupes Topologiques et des Algèbres de Lie. Textes Mathématiques 2. Cedic, Paris (1980). (In French.) MR 0644979 | Zbl 0464.22001
[15] S. Helgason: Differential Geometry, Lie Groups, and Symmetric Spaces. Graduate Studies in Mathematics 34. American Mathematical Society, Providence (2001). DOI 10.1090/gsm/034 | MR 1834454 | Zbl 0993.53002
[16] R. Hermann: Analytic continuation of group representations. IV. Commun. Math. Phys. 5 (1967), 131-156. DOI 10.1007/BF01646842 | MR 0231948 | Zbl 0144.46105
[17] L. Hörmander: The Analysis of Linear Partial Differential Operators. III. Grundlehren der Mathematischen Wissenschaften 274. Springer, Berlin (1985). DOI 10.1007/978-3-540-49938-1 | MR 0781536 | Zbl 0601.35001
[18] A. Joseph: Minimal realizations and spectrum generating algebras. Commun. Math. Phys. 36 (1974), 325-338. DOI 10.1007/BF01646204 | MR 0342049 | Zbl 0285.17007
[19] A. A. Kirillov: Lectures on the Orbit Method. Graduate Studies in Mathematics 64. American Mathematical Society, Providence (2004). DOI 10.1090/gsm/064 | MR 2069175 | Zbl 1229.22003
[20] A. W. Knapp: Representation Theory of Semisimple Groups: An Overview Based on Examples. Princeton Mathematical Series 36. Princeton University Press, Princeton (1986). DOI 10.1515/9781400883974 | MR 0855239 | Zbl 0604.22001
[21] M. Lesimple, G. Pinczon: Deformations of Lie group and Lie algebra representations. J. Math. Phys. 34 (1993), 4251-4272. DOI 10.1063/1.529998 | MR 1233270 | Zbl 0798.22009
[22] M. Levy-Nahas: Deformation and contraction of Lie algebras. J. Math. Phys. 8 (1967), 1211-1222. DOI 10.1063/1.1705338 | MR 0224747 | Zbl 0175.24803
[23] M. Levy-Nahas, R. Seneor: First order deformations of Lie algebras representations, $E(3)$ and Poincaré examples. Commun. Math. Phys. 9 (1968), 242-266. DOI 10.1007/BF01645689 | MR 0235804 | Zbl 0161.46003
[24] A. Nijenhuis, R. W. Richardson, Jr.: Cohomology and deformations in graded Lie algebras. Bull. Am. Math. Soc. 72 (1966), 1-29. DOI 10.1090/S0002-9904-1966-11401-5 | MR 0195995 | Zbl 0136.30502
[25] A. Nijenhuis, R. W. Richardson, Jr.: Deformations of homomorphisms of Lie groups and Lie algebras. Bull. Am. Math. Soc. 73 (1967), 175-179. DOI 10.1090/S0002-9904-1967-11703-8 | MR 0204575 | Zbl 0153.04402
[26] A. Nijenhuis, R. W. Richardson, Jr.: Deformations of Lie algebras structures. J. Math. Mech. 17 (1967), 89-105. DOI 10.1512/iumj.1968.17.17005 | MR 0214636 | Zbl 0166.30202
[27] A. Voros: An algebra of pseudo differential operators and the asymptotics of quantum mechanics. J. Funct. Anal. 29 (1978), 104-132. DOI 10.1016/0022-1236(78)90049-6 | MR 0496088 | Zbl 0386.47031
[28] N. R. Wallach: Harmonic Analysis on Homogeneous Spaces. Pure and Applied Mathematics 19. Marcel Dekker, New York (1973). MR 0498996 | Zbl 0265.22022

Affiliations:   Benjamin Cahen, Université de Lorraine, Site de Metz, UFR-MIM, Département de mathématiques, Bâtiment A, 3 rue Augustin Fresnel, BP 45112, 57073 Metz Cedex 03, France, e-mail: benjamin.cahen@univ-lorraine.fr


 
PDF available at: