Czechoslovak Mathematical Journal, first online, pp. 1-12


$(\delta,2)$-primary ideals of a commutative ring

Gülşen Ulucak, Ece Yetkin Çelikel

Received March, 2019.   Published online April 17, 2020.

Abstract:  Let $R$ be a commutative ring with nonzero identity, let $\mathcal{I(R)}$ be the set of all ideals of $R$ and $\delta\colon\mathcal{I(R)}\rightarrow\mathcal{I(R)}$ an expansion of ideals of $R$ defined by $I\mapsto\delta(I)$. We introduce the concept of $(\delta,2)$-primary ideals in commutative rings. A proper ideal $I$ of $R$ is called a $(\delta,2)$-primary ideal if whenever $a,b\in R$ and $ab\in I$, then $a^2\in I$ or $b^2\in\delta(I)$. Our purpose is to extend the concept of $2$-ideals to $(\delta,2)$-primary ideals of commutative rings. Then we investigate the basic properties of $(\delta,2)$-primary ideals and also discuss the relations among $(\delta,2)$-primary, $\delta$-primary and $2$-prime ideals.
Keywords:  $(\delta,2)$-primary ideal; $2$-prime ideal; $\delta$-primary ideal
Classification MSC:  13A15, 13F05, 05A15, 13G05
DOI:  10.21136/CMJ.2020.0146-19

PDF available at:  Springer   Institute of Mathematics CAS

References:
[1] D. D. Anderson, K. R. Knopp, R. L. Lewin: Ideals generated by powers of elements. Bull. Aust. Math. Soc. 49 (1994), 373-376. DOI 10.1017/S0004972700016488 | MR 1274517 | Zbl 0820.13004
[2] D. D. Anderson, M. Winders: Idealization of a module. J. Commut. Algebra 1 (2009), 3-56. DOI 10.1216/JCA-2009-1-1-3 | MR 2462381 | Zbl 1194.13002
[3] M. F. Atiyah, I. G. Macdonald: Introduction to Commutative Algebra. Addison-Wesley Publishing, Reading (1969). DOI 10.1201/9780429493621 | MR 0242802 | Zbl 0175.03601
[4] A. Badawi, B. Fahid: On weakly 2-absorbing $\delta$-primary ideals of commutative rings. To appear in Georgian Math. J. DOI 10.1515/gmj-2018-0070
[5] A. Badawi, D. Sonmez, G. Yesilot: On weakly $\delta$-semiprimary ideals of commutative rings. Algebra Colloq. 25 (2018), 387-398. DOI 10.1142/S1005386718000287 | MR 3843092 | Zbl 1401.13007
[6] C. Beddani, W. Messirdi: 2-prime ideals and their applications. J. Algebra Appl. 15 (2016), Article ID 1650051, 11 pages. DOI 10.1142/S0219498816500511 | MR 3454713 | Zbl 1338.13038
[7] R. Gilmer: Multiplicative Ideal Theory. Queen's Papers in Pure and Applied Mathematics 90, Queen's University, Kingston (1992). MR 1204267 | Zbl 0804.13001
[8] N. J. Groenewald: A characterization of semi-prime ideals in near-rings. J. Aust. Math. Soc., Ser. A 35 (1983), 194-196. DOI 10.1017/S1446788700025660 | MR 0704424 | Zbl 0521.16030
[9] J. A. Huckaba: Commutative Rings with Zero Divisors. Monographs and Textbooks in Pure and Applied Mathematics 117, Marcel Dekker, New York (1988). MR 0938741 | Zbl 0637.13001
[10] I. Kaplansky: Commutative Rings. University of Chicago Press, Chicago (1974). MR 0345945 | Zbl 0296.13001
[11] S. Koc, U. Tekir, G. Ulucak: On strongly quasi primary ideals. Bull. Korean Math. Soc. 56 (2019), 729-743. DOI 10.4134/BKMS.b180522 | MR 3960633 | Zbl 1419.13040
[12] D. Zhao: $\delta$-primary ideals of commutative rings. Kyungpook Math. J. 41 (2001), 17-22. MR 1847432 | Zbl 1028.13001

Affiliations:   Gülşen Ulucak, Department of Mathematics, Faculty of Science, Gebze Technical University, Gebze, Kocaeli, Turkey, e-mail: gulsenulucak@gtu.edu.tr; Ece Yetkin Çelikel (corresponding author), Department of Electrical Electronics Engineering, Faculty of Engineering, Hasan Kalyoncu University, Gaziantep, Turkey, e-mail: yetkinece@gmail.com, ece.celikel@hku.edu.tr


 
PDF available at: