Czechoslovak Mathematical Journal, first online, pp. 1-12


Main eigenvalues of real symmetric matrices with application to signed graphs

Zoran Stanić

Received March 29, 2019.   Published online April 14, 2020.

Abstract:  An eigenvalue of a real symmetric matrix is called main if there is an associated eigenvector not orthogonal to the all-1 vector $ j$. Main eigenvalues are frequently considered in the framework of simple undirected graphs. In this study we generalize some results and then apply them to signed graphs.
Keywords:  main angle; signed graph; adjacency matrix; Laplacian matrix; Gram matrix
Classification MSC:  05C22, 05C50
DOI:  10.21136/CMJ.2020.0147-19

PDF available at:  Springer   Institute of Mathematics CAS

References:
[1] D. M. Cardoso, I. Sciriha, C. Zerafa: Main eigenvalues and $(\kappa, \tau)$-regular sets. Linear Algebra Appl. 432 (2010), 2399-2408. DOI 10.1016/j.laa.2009.07.039 | MR 2599869 | Zbl 1217.05136
[2] D. Cvetković, M. Doob, H. Sachs: Spectra of Graphs: Theory and Applications. J. A. Barth Verlag, Heidelberg (1995). MR 1324340 | Zbl 0824.05046
[3] D. Cvetković, P. Rowlinson, S. Simić: An Introduction to the Theory of Graph Spectra. London Mathematical Society Student Texts 75, Cambridge University Press, Cambridge (2010). DOI 10.1017/CBO9780511801518 | MR 2571608 | Zbl 1211.05002
[4] H. Deng, H. Huang: On the main signless Laplacian eigenvalues of a graph. Electron. J. Linear Algebra 26 (2013), 381-393. DOI 10.13001/1081-3810.1659 | MR 3084649 | Zbl 1282.05109
[5] M. Doob: A geometric interpretation of the least eigenvalue of a line graph. Combinatorial Mathematics and its Applications (R. C. Bose, T. A. Dowling, eds.). University of North Carolina, Chapel Hill (1970), 126-135. MR 0268060 | Zbl 0209.55403
[6] E. V. Haynsworth: Applications of a theorem on partitioned matrices. J. Res. Natl. Bur. Stand., Sec. B 63 (1959), 73-78. DOI 10.6028/jres.063B.009 | MR 0109432 | Zbl 0090.24104
[7] Y. Hou, Z. Tang, W. C. Shiu: Some results on graphs with exactly two main eigenvalues. Appl. Math. Lett. 25 (2012), 1274-1278. DOI 10.1016/j.aml.2011.11.025 | MR 2947393 | Zbl 1248.05112
[8] Y. Hou, H. Zhou: Trees with exactly two main eigenvalues. J. Nat. Sci. Hunan Norm. Univ. 28 (2005), 1-3. (In Chinese.) MR 2240441 | Zbl 1109.05071
[9] M. Petersdorf, H. Sachs: Über Spektrum, Automorphismengruppe und Teiler eines Graphen. Wiss. Z. Tech. Hochsch. Ilmenau 15 (1969), 123-128. (In German.) MR 0269552 | Zbl 0199.27504
[10] P. Rowlinson: The main eigenvalues of a graph: A survey. Appl. Anal. Discrete Math. 1 (2007), 445-471. DOI 10.2298/AADM0702445R | MR 2355287 | Zbl 1199.05241
[11] Z. Stanić: Inequalities for Graph Eigenvalues. London Mathematical Society Lecture Note Series 423, Cambridge University Press, Cambridge (2015). DOI 10.1017/CBO9781316341308 | MR 3469535 | Zbl 1368.05001
[12] Z. Stanić: Bounding the largest eigenvalue of signed graphs. Linear Algebra Appl. 573 (2019), 80-89. DOI 10.1016/j.laa.2019.03.011 | MR 3933292 | Zbl 1411.05109
[13] T. Zaslavsky: Matrices in the theory of signed simple graphs. Advances in Discrete Mathematics and Applications (B. D. Acharya, G. O. H. Katona, J. Nešetřil, eds.). Ramanujan Mathematical Society Lecture Notes Series 13, Ramanujan Mathematical Society, Mysore (2010), 207-229. MR 2766941 | Zbl 1231.05120

Affiliations:   Zoran Stanić, Faculty of Mathematics, University of Belgrade, Studentski trg 16, 11 000 Belgrade, Serbia, e-mail: zstanic@math.rs


 
PDF available at: