Czechoslovak Mathematical Journal, Vol. 71, No. 1, pp. 191-209, 2021


Characterization by intersection graph of some families of finite nonsimple groups

Hossein Shahsavari, Behrooz Khosravi

Received June 3, 2019.   Published online September 17, 2020.

Abstract:  For a finite group $G$, $\Gamma(G)$, the intersection graph of $G$, is a simple graph whose vertices are all nontrivial proper subgroups of $G$ and two distinct vertices $H$ and $K$ are adjacent when $H\cap K\neq1$. In this paper, we classify all finite nonsimple groups whose intersection graphs have a leaf and also we discuss the characterizability of them using their intersection graphs.
Keywords:  intersection graph; leaf; nonsimple group; characterization
Classification MSC:  05C25, 20D99
DOI:  10.21136/CMJ.2020.0250-19

PDF available at:  Springer   Institute of Mathematics CAS

References:
[1] S. Akbari, F. Heydari, M. Maghasedi: The intersection graph of a group. J. Algebra Appl. 14 (2015), Article ID 1550065, 9 pages. DOI 10.1142/S0219498815500656 | MR 3323326 | Zbl 1309.05090
[2] B. Csákány, G. Pollák: The graph of subgroups of a finite group. Czech. Math. J. 19 (1969), 241-247. (In Russian.) DOI 10.21136/CMJ.1969.100891 | MR 0249328 | Zbl 0218.20019
[3] S. P. Glasby, P. P. Pálfy, C. Schneider: $p$-groups with a unique proper non-trivial characteristic subgroup. J. Algebra 348 (2011), 85-109. DOI 10.1016/j.jalgebra.2011.10.005 | MR 2852233 | Zbl 1252.20014
[4] S. Kayacan: $K_{3,3}$-free intersection graphs of finite groups. Commun. Algebra 45 (2017), 2466-2477. DOI 10.1080/00927872.2016.1233209 | MR 3594532 | Zbl 1388.20035
[5] S. Kayacan, E. Yaraneri: Abelian groups with isomorphic intersection graphs. Acta Math. Hung. 146 (2015), 107-127. DOI 10.1007/s10474-015-0486-9 | MR 3348183 | Zbl 1374.20047
[6] S. Kayacan, E. Yaraneri: Finite groups whose intersection graphs are planar. J. Korean Math. Soc. 52 (2015), 81-96. DOI 10.4134/JKMS.2015.52.1.081 | MR 3299371 | Zbl 1314.20016
[7] H. Shahsavari, B. Khosravi: On the intersection graph of a finite group. Czech. Math. J. 67 (2017), 1145-1153. DOI 10.21136/CMJ.2017.0446-16 | MR 3736024 | Zbl 06819578
[8] H. Shahsavari, B. Khosravi: Characterization of some families of simple groups by their intersection graphs. Commun. Algebra 48 (2020), 1266-1280. DOI 10.1080/00927872.2019.1682151 | MR 4079532 | Zbl 1435.05104
[9] R. Shen: Intersection graphs of subgroups of finite groups. Czech. Math. J. 60 (2010), 945-950. DOI 10.1007/s10587-010-0085-4 | MR 2738958 | Zbl 1208.20022
[10] D. R. Taunt: Finite groups having unique proper characteristic subgroups. I. Proc. Camb. Philos. Soc. 51 (1955), 25-36. DOI 10.1017/S0305004100029881 | MR 0067886 | Zbl 0064.02402
[11] B. Zelinka: Intersection graphs of finite Abelian groups. Czech. Math. J. 25 (1975), 171-174. DOI 10.21136/CMJ.1975.101307 | MR 0372075 | Zbl 0311.05119

Affiliations:   Hossein Shahsavari, Behrooz Khosravi (corresponding author), Department of Pure Mathematics, Faculty of Mathematics and Computer Science, Amirkabir University of Technology (Tehran Polytechnic), 424 Hafez Avenue, Tehran 15914, Iran, e-mail: h.shahsavari13@yahoo.com, khosravibbb@yahoo.com


 
PDF available at: