Czechoslovak Mathematical Journal, Vol. 71, No. 1, pp. 269-281, 2021


On the Hilbert 2-class field tower of some imaginary biquadratic number fields

Mohamed Mahmoud Chems-Eddin, Abdelmalek Azizi, Abdelkader Zekhnini, Idriss Jerrari

Received July 27, 2019.   Published online October 27, 2020.

Abstract:  Let $\Bbbk=\mathbb{Q} \bigl(\sqrt2, \sqrt d \bigr)$ be an imaginary bicyclic biquadratic number field, where $d$ is an odd negative square-free integer and $\Bbbk_2^{(2)}$ its second Hilbert 2-class field. Denote by $G={\rm Gal}(\Bbbk_2^{(2)}/\Bbbk)$ the Galois group of $\Bbbk_2^{(2)}/\Bbbk$. The purpose of this note is to investigate the Hilbert 2-class field tower of $\Bbbk$ and then deduce the structure of $G$.
Keywords:  2-class group; imaginary biquadratic number field; capitulation; Hilbert 2-class field
Classification MSC:  11R11, 11R27, 11R29, 11R37
DOI:  10.21136/CMJ.2020.0333-19

PDF available at:  Springer   Institute of Mathematics CAS

References:
[1] A. Azizi: Unités de certains corps de nombres imaginaires et abéliens sur $\mathbb Q$. Ann. Sci. Math. Qué. 23 (1999), 15-21. (In French.) MR 1721726 | Zbl 1041.11072
[2] A. Azizi: Sur les unités de certains corps de nombres de degré 8 sur $\mathbb Q$. Ann. Sci. Math. Qué. 29 (2005), 111-129. (In French.) MR 2309703 | Zbl 1188.11056
[3] A. Azizi, I. Benhamza: Sur la capitulation des 2-classes d'idéaux de $\mathbb Q(\sqrt d, \sqrt{-2})$. Ann. Sci. Math. Qué. 29 (2005), 1-20. (In French.) MR 2296826 | Zbl 1217.11097
[4] A. Azizi, M. M. Chems-Eddin, A. Zekhnini: On the rank of the 2-class group of some imaginary triquadratic number fields. Available at https://arxiv.org/abs/1905.01225 (2019), 21 pages.
[5] A. Azizi, A. Mouhib: Capitulation des 2-classes d'idéaux de $\mathbb Q(\sqrt2, \sqrt{d})$ où $d$ est un entier naturel sans facteurs carrés. Acta Arith. 109 (2003), 27-63. (In French.) DOI 10.4064/aa109-1-2 | MR 1980850 | Zbl 1077.11078
[6] A. Azizi, M. Talbi: Capitulation des 2-classes d'idéaux de certains corps biquadratiques cycliques. Acta Arith. 127 (2007), 231-248. (In French.) DOI 10.4064/aa127-3-3 | MR 2310345 | Zbl 1169.11049
[7] A. Azizi, M. Taous: Capitulation des 2-classes d'idéaux de $k=\mathbb Q(\sqrt{2p},i)$. Acta Arith. 131 (2008), 103-123. (In French.) DOI 10.4064/aa131-2-1 | MR 2388046 | Zbl 1139.11048
[8] P. E. Conner, J. Hurrelbrink: Class Number Parity. Series in Pure Mathematics 8. World Scientific, Singapore (1988). DOI 10.1142/0663 | MR 0963648 | Zbl 0743.11061
[9] D. Gorenstein: Finite Groups. Harper's Series in Modern Mathematics. Harper and Row, New York (1968). MR 0231903 | Zbl 0185.05701
[10] G. Gras: Sur les $\ell$-classes d'idéaux dans les extensions cycliques rélatives de degré premier $\ell$. I. Ann. Inst. Fourier 23 (1973), 1-48. (In French.) DOI 10.5802/aif.471 | MR 0360519 | Zbl 0276.12013
[11] F.-P. Heider, B. Schmithals: Zur Kapitulation der Idealklassen in unverzweigten primzyklischen Erweiterungen. J. Reine Angew. Math. 336 (1982), 1-25. (In German.) DOI 10.1515/crll.1982.336.1 | MR 0671319 | Zbl 0505.12016
[12] M. Ishida: The Genus Fields of Algebraic Number Fields. Lecture Notes in Mathematics 555. Springer, Berlin (1976). DOI 10.1007/BFb0100829 | MR 0435028 | Zbl 0353.12001
[13] P. Kaplan: Divisibilité par 8 du nombre des classes des corps quadratiques dont le 2-groupe des classes est cyclique, et réciprocité biquadratique. J. Math. Soc. Japan 25 (1973), 596-608. (In French.) DOI 10.2969/jmsj/02540596 | MR 0323757 | Zbl 0276.12006
[14] P. Kaplan: Sur le 2-groupe des classes d'idéaux des corps quadratiques. J. Reine. Angew. Math. 283-284 (1976), 313-363. (In French.) DOI 10.1515/crll.1976.283-284.313 | MR 0404206 | Zbl 0337.12003
[15] H. Kisilevsky: Number fields with class number congruent to $4 \pmod 8$ and Hilbert's Theorem 94. J. Number Theory 8 (1976), 271-279. DOI 10.1016/0022-314X(76)90004-4 | MR 0417128 | Zbl 0334.12019
[16] R. Kučera: On the parity of the class number of a biquadratic field. J. Number Theory 52 (1995), 43-52. DOI 10.1006/jnth.1995.1054 | MR 1331764 | Zbl 0852.11065
[17] F. Lemmermeyer: Kuroda's class number formula. Acta Arith. 66 (1994), 245-260. DOI 10.4064/aa-66-3-245-260 | MR 1276992 | Zbl 0807.11052
[18] T. M. McCall, C. J. Parry, R. R. Ranalli: Imaginary bicyclic biquadratic fields with cyclic 2-class group. J. Number Theory 53 (1995), 88-99. DOI 10.1006/jnth.1995.1079 | MR 1344833 | Zbl 0831.11059
[19] O. Taussky: A remark concerning Hilbert's Theorem 94. J. Reine Angew. Math. 239-240 (1969), 435-438. DOI 10.1515/crll.1969.239-240.435 | MR 0279070 | Zbl 0186.09002
[20] H. Wada: On the class number and the unit group of certain algebraic number fields. J. Fac. Sci., Univ. Tokyo, Sect. I 13 (1966), 201-209. MR 0214565 | Zbl 0158.30103

Affiliations:   Mohamed Mahmoud Chems-Eddin, Abdelmalek Azizi, Mohammed First University, Mathematics Department, Sciences Faculty, Mohammed V Avenue, P. O. Box 524, Oujda 60000, Morocco, e-mail: 2m.chemseddin@gmail.com, abdelmalekazizi@yahoo.fr; Abdelkader Zekhnini (corresponding author), Mohammed First University, Mathematics Department, Pluridisciplinary Faculty, B.P. 300, Selouane, Nador 62700, Morocco, e-mail: zekha1@yahoo.fr; Idriss Jerrari, Mohammed First University, Mathematics Department, Sciences Faculty, Mohammed V Avenue, P. O. Box 524, Oujda 60000, Morocco, e-mail: idriss_math@hotmail.fr


 
PDF available at: