Czechoslovak Mathematical Journal, first online, pp. 1-7


Annihilators and attached primes of top local cohomology modules

Shahram Rezaei

Received November 5, 2019.   Published online September 30, 2020.

Abstract:  Let $\frak{a}$ be an ideal of Noetherian ring $R$ and $M$ a finitely generated $R$-module. In this paper we determine ${\rm Ann}_R({\rm H}_{\frak{a}}^{{\rm cd} (\frak{a},M)}(M))$ and ${\rm Att}_R({\rm H}_{\frak{a}}^{{\rm cd}(\frak{a},M)}(M))$, which are two important problems concerning the last nonzero local cohomology module ${\rm H}_{\frak{a}}^{{\rm cd}(\frak{a},M)}(M)$. We show that ${\rm Ann}_R({\rm H}_{\frak{a}}^{{\rm cd} (\frak{a},M)}(M))= {\rm Ann}_R(M/T_R(\frak{a},M))$, where $T_R(\frak{a},M)$ is the largest submodule of $M$ such that ${\rm cd}(\frak{a},T_R(\frak{a},M))<{\rm cd}(\frak{a},M)$. Using the above result we determine the attached primes of the top local cohomology module ${\rm Att}_R({\rm H}_{\frak{a}}^{{\rm cd} (\frak{a},M)}(M))$. In fact, we show that ${\rm Att}_R({\rm H}_{\frak{a}}^{{\rm cd}(\frak{a},M)}(M))=\{ \frak{p} \in{\rm Supp}_R M \colon{\rm cd} (\frak{a},R/\frak{p})= {\rm cd} (\frak{a},M) \}$. Then by using these, we obtain some main results of A. Atazadeh, M. Sedghi, R. Naghipour (2014), K. Bahmanpour, J. A'zami, G. Ghasemi (2012) and K. Divaani-Aazar (2009).
Keywords:  annihilator; attached prime; local cohomology
Classification MSC:  13D45, 14B15, 13E05
DOI:  10.21136/CMJ.2020.0479-19

PDF available at:  Springer   Institute of Mathematics CAS

References:
[1] M. Aghapournahr, L. Melkersson: Cofiniteness and coassociated primes of local cohomology modules. Math. Scand. 105 (2009), 161-170. DOI 10.7146/math.scand.a-15112 | MR 2573542 | Zbl 1186.13013
[2] A. Atazadeh, M. Sedghi, R. Naghipour: On the annihilators and attached primes of top local cohomology modules. Arch. Math. 102 (2014), 225-236. DOI 10.1007/s00013-014-0629-1 | MR 3181712 | Zbl 1292.13004
[3] A. Atazadeh, M. Sedghi, R. Naghipour: Cohomological dimension filtration and annihilators of top local cohomology modules. Colloq. Math. 139 (2015), 25-35. DOI 10.4064/cm139-1-2 | MR 3332732 | Zbl 1314.13033
[4] K. Bahmanpour: Annihilators of local cohomology modules. Commun. Algebra 43 (2015), 2509-2515. DOI 10.1080/00927872.2014.900687 | MR 3344203 | Zbl 1323.13003
[5] K. Bahmanpour, J. A'zami, G. Ghasemi: On the annihilators of local cohomology modules. J. Algebra 363 (2012), 8-13. DOI 10.1016/j.jalgebra.2012.03.026 | MR 2925842 | Zbl 1262.13027
[6] M. T. Dibaei, S. Yassemi: Attached primes of the top local cohomology modules with respect to an ideal. Arch. Math. 84 (2005), 292-297. DOI 10.1007/s00013-004-1156-2 | MR 2135038 | Zbl 1085.13008
[7] K. Divaani-Aazar: Vanishing of the top local cohomology modules over Noetherian rings. Proc. Indian Acad. Sci., Math. Sci 119 (2009), 23-35. DOI 10.1007/s12044-009-0003-6 | MR 2508486 | Zbl 1179.13012
[8] K. Divaani-Aazar, R. Naghipour, M. Tousi: Cohomological dimension of certain algebraic varieties. Proc. Am. Math. Soc. 130 (2002), 3537-3544. DOI 10.1090/S0002-9939-02-06500-0 | MR 1918830 | Zbl 0998.13007
[9] L. R. Lynch: Annihilators of top local cohomology. Commun. Algebra 40 (2012), 542-551. DOI 10.1080/00927872.2010.533223 | MR 2889480 | Zbl 1251.13015

Affiliations:   Shahram Rezaei, Department of Mathematics, Faculty of Science, Payame Noor University, Nakhl St, Lashkarak Highway, Tehran 19569, Iran, e-mail: Sha.rezaei@gmail.com


 
PDF available at: