Czechoslovak Mathematical Journal, Vol. 70, No. 3, pp. 805-816, 2020


The $p$-nilpotency of finite groups with some weakly pronormal subgroups

Jianjun Liu, Jian Chang, Guiyun Chen

Received December 11, 2018.   Published online February 21, 2020.

Abstract:  For a finite group $G$ and a fixed Sylow $p$-subgroup $P$ of $G$, Ballester-Bolinches and Guo proved in 2000 that $G$ is $p$-nilpotent if every element of $P\cap G'$ with order $p$ lies in the center of $N_G(P)$ and when $p=2$, either every element of $P\cap G'$ with order $4$ lies in the center of $N_G(P)$ or $P$ is quaternion-free and $N_G(P)$ is $2$-nilpotent. Asaad introduced weakly pronormal subgroup of $G$ in 2014 and proved that $G$ is $p$-nilpotent if every element of $P$ with order $p$ is weakly pronormal in $G$ and when $p=2$, every element of $P$ with order $4$ is also weakly pronormal in $G$. These results generalized famous Itô's Lemma. We are motivated to generalize Ballester-Bolinches and Guo's Theorem and Asaad's Theorem. It is proved that if $p$ is the smallest prime dividing the order of a group $G$ and $P$, a Sylow $p$-subgroup of $G$, then $G$ is $p$-nilpotent if $G$ is $S_4$-free and every subgroup of order $p$ in $P\cap P^x\cap G^{\mathfrak{N_p}}$ is weakly pronormal in $N_G(P)$ for all $x\in G\setminus N_G(P)$, and when $p=2$, $P$ is quaternion-free, where $G^{\mathfrak{N_p}}$ is the $p$-nilpotent residual of $G$.
Keywords:  weakly pronormal subgroup; normalizer; minimal subgroup; formation; $p$-nilpotency
Classification MSC:  20D10, 20D20


References:
[1] M. Asaad: On weakly pronormal subgroups of finite groups. J. Group Theory 17 (2014), 407-418. DOI 10.1515/jgt-2013-0045 | MR 3200366 | Zbl 1296.20016
[2] M. Asaad, A. Ballester-Bolinches, M. C. Pedraza Aguilera: A note on minimal subgroups of finite groups. Commun. Algebra 24 (1996), 2771-2776. DOI 10.1080/00927879608542654 | MR 1393283 | Zbl 0856.20015
[3] M. Asaad, M. Ramadan: On the intersection of maximal subgroups of a finite group. Arch. Math. 61 (1993), 206-214. DOI 10.1007/BF01198715 | MR 1231153 | Zbl 0787.20013
[4] A. Ballester-Bolinches: $\mathfrak H$-normalizers and local definitions of saturated formations of finite groups. Isr. J. Math. 67 (1989), 312-326. DOI 10.1007/BF02764949 | MR 1029905 | Zbl 0689.20036
[5] A. Ballester-Bolinches, J. C. Beidleman, A. D. Feldman, M. F. Ragland: On generalised pronormal subgroups of finite groups. Glasg. Math. J. 56 (2014), 691-703. DOI 10.1017/S0017089514000159 | MR 3250272 | Zbl 1322.20011
[6] A. Ballester-Bolinches, J. C. Beidleman, A. D. Feldman, M. F. Ragland: Finite groups in which pronormality and $\mathfrak F$-pronormality coincide. J. Group Theory 19 (2016), 323-329. DOI 10.1515/jgth-2015-0035 | MR 3466598 | Zbl 1344.20027
[7] A. Ballester-Bolinches, X. Guo: Some results on $p$-nilpotence and solubility of finite groups. J. Algebra 228 (2000), 491-496. DOI 10.1006/jabr.1999.8274 | MR 1764575 | Zbl 0961.20016
[8] A. Ballester-Bolinches, X. Guo, Y. Li, N. Su: On finite $p$-nilpotent groups. Monatsh. Math. 181 (2016), 63-70. DOI 10.1007/s00605-015-0803-y | MR 3535904 | Zbl 1369.20017
[9] B. Brewster, A. Martínez-Pastor, M. D. Pérez-Ramos: Pronormal subgroups of a direct product of groups. J. Algebra 321 (2009), 1734-1745. DOI 10.1016/j.jalgebra.2008.12.006 | MR 2498266 | Zbl 1200.20015
[10] K. Doerk, T. Hawkes: Finite Soluble Groups. De Gruyter Expositions in Mathematics 4, Walter de Gruyter, Berlin (1992). DOI 10.1515/9783110870138 | MR 1169099 | Zbl 0753.20001
[11] L. Dornhoff: $M$-groups and $2$-groups. Math. Z. 100 (1967), 226-256. DOI 10.1007/BF01109806 | MR 0217174 | Zbl 0157.35503
[12] D. Gorenstein: Finite Groups. Harper's Series in Modern Mathematics, Harper & Row Publishers, New York (1968). MR 0231903 | Zbl 0185.05701
[13] X. Y. Guo, K. P. Shum: The influence of minimal subgroups of focal subgroups on the structure of finite groups. J. Pure Appl. Algebra 169 (2002), 43-50. DOI 10.1016/S0022-4049(01)00062-7 | MR 1890184 | Zbl 0997.20023
[14] X. Guo, K. P. Shum: On $p$-nilpotency and minimal subgroups of finte groups. Sci. China, Ser. A 46 (2003), 176-186. DOI 10.1360/03ys9019 | MR 1978505 | Zbl 1217.20010
[15] X. Guo, K. P. Shum: Permutability of minimal subgroups and $p$-nilpotentcy of finite groups. Isr. J. Math. 136 (2003), 145-155. DOI 10.1007/BF02807195 | MR 1998107 | Zbl 1048.20005
[16] X. Guo, K. P. Shum: $p$-nilpotence of finite groups and minimal subgroups. J. Algebra 270 (2003), 459-470. DOI 10.1016/j.jalgebra.2003.05.004 | MR 2019627 | Zbl 1072.20020
[17] N. Itô: Über eine zur Frattini-Gruppe duale Bildung. Nagoya Math. J. 9 (1955), 123-127. (In German.) DOI 10.1017/S0027763000023369 | MR 0074410 | Zbl 0066.01401
[18] Y. Li, N. Su, Y. Wang: A generalization of Burnside's $p$-nilpotency criterion. J. Group Theory 20 (2017), 185-192. DOI 10.1515/jgth-2016-0028 | MR 3592611 | Zbl 1368.20014
[19] I. A. Malinowska: Finite groups all of whose small subgroups are pronormal. Acta Math. Hung. 147 (2015), 324-337. DOI 10.1007/s10474-015-0531-8 | MR 3420580 | Zbl 1363.20011
[20] G. Navarro: Pronormal subgroups and zeros of characters. Proc. Am. Math. Soc. 142 (2014), 3003-3005. DOI 10.1090/S0002-9939-2014-12050-8 | MR 3223355 | Zbl 1309.20006
[21] T. A. Peng: Finite groups with pro-normal subgroups. Proc. Am. Math. Soc. 20 (1969), 232-234. DOI 10.1090/S0002-9939-1969-0232850-1 | MR 0232850 | Zbl 0167.02302
[22] D. J. S. Robinson: A Course in the Theory of Groups. Graduate Texts in Mathematics 80, Springer, New York (1982). DOI 10.1007/978-1-4419-8594-1 | MR 0648604 | Zbl 0483.20001
[23] J. Shi, W. Shi, C. Zhang: A note on $p$-nilpotence and solvability of finite groups. J. Algebra 321 (2009), 1555-1560. DOI 10.1016/j.jalgebra.2008.12.004 | MR 2494409 | Zbl 1169.20012

Affiliations:   Jianjun Liu, Jian Chang, Guiyun Chen (corresponding author), School of Mathematics and Statistics, Southwest University, 1, Tiansheng Road, Beibei, Chongqing, 400715, P. R. China, e-mail: liujj198123@163.com, 1079060015@qq.com, gychen1963@163.com


 
PDF available at: