Czechoslovak Mathematical Journal, Vol. 70, No. 3, pp. 881-890, 2020


New estimates for the first eigenvalue of the Jacobi operator on closed hypersurfaces in Riemannian space forms

Jiancheng Liu, Rong Mi

Received December 28, 2018.   Published online February 24, 2020.

Abstract:  We study the first eigenvalue of the Jacobi operator on closed hypersurfaces with constant mean curvature in non-flat Riemannian space forms. Under an appropriate constraint on the totally umbilical tensor of the hypersurfaces and following Meléndez's ideas in J. Meléndez (2014) we obtain a new sharp upper bound of the first eigenvalue of the Jacobi operator.
Keywords:  Jacobi operator; first eigenvalue; closed hypersurface
Classification MSC:  53C50


References:
[1] H. Alencar, M. do Carmo: Hypersurfaces with constant mean curvature in spheres. Proc. Am. Math. Soc. 120 (1994), 1223-1229. DOI 10.1090/S0002-9939-1994-1172943-2 | MR 1172943 | Zbl 0802.53017
[2] L. J. Alías: On the stability index of minimal and constant mean curvature hypersurfaces in spheres. Rev. Unión Mat. Argent. 47 (2006-2007), 39-61. MR 2301375 | Zbl 1139.53029
[3] L. J. Alías, A. Barros, A. Brasil, Jr.: A spectral characterization of the $H(r)$-torus by the first stability eigenvalue. Proc. Am. Math. Soc. 133 (2005), 875-884. DOI 10.1090/S0002-9939-04-07559-8 | MR 2113939 | Zbl 1065.53046
[4] L. J. Alías, S. C. Garc'ia-Mart'inez: An estimate for the scalar curvature of constant mean curvature hypersurfaces in space forms. Geom. Dedicata 156 (2012), 31-47. DOI 10.1007/s10711-011-9588-x | MR 2863544 | Zbl 1232.53046
[5] L. J. Alías, J. Meléndez, O. Palmas: Hypersurfaces with constant scalar curvature in space forms. Differ. Geom. Appl. 58 (2018), 65-82. DOI 10.1016/j.difgeo.2018.01.001 | MR 3777748 | Zbl 1387.53069
[6] C. P. Aquino, H. F. de Lima, F. R. dos Santos, M. A. L. Velásquez: On the first stability eigenvalue of hypersurfaces in Euclidean and hyperbolic spaces. Quaest. Math. 40 (2017), 605-616. DOI 10.2989/16073606.2017.1305463 | MR 3691472 | Zbl 1426.53077
[7] J. L. Barbosa, M. do Carmo, J. Eschenburg: Stability of hypersurfaces of constant mean curvature in Riemannian manifolds. Math. Z. 197 (1988), 123-138. DOI 10.1007/bf01161634 | MR 0917854 | Zbl 0653.53045
[8] I. Chavel: Eigenvalues in Riemannian Geometry. Pure and Applied Mathematics 115. Academic Press, Orlando (1984). DOI 10.1016/S0079-8169(08)60806-5 | MR 0768584 | Zbl 0551.53001
[9] D. Chen, Q.-M. Cheng: Estimates for the first eigenvalue of Jacobi operator on hypersurfaces with constant mean curvature in spheres. Calc. Var. Partial Differ. Equ. 56 (2017), Article ID 50, 12 pages. DOI 10.1007/s00526-017-1132-x | MR 3626321 | Zbl 1368.53042
[10] Q.-M. Cheng: The rigidity of Clifford torus $S^1\bigl({\scriptstyle \sqrt{\frac1n}}\bigr)\times S^{n-1} \bigl({\scriptstyle \sqrt{\frac{n-1}n}}\big)$. Comment. Math. Helv. 71 (1996), 60-69. DOI 10.1007/BF02566409 | MR 1371678 | Zbl 0874.53046
[11] Q.-M. Cheng: Hypersurfaces in a unit sphere $S^{n+1}(1)$ with constant scalar curvature. J. Lond. Math. Soc., II. Ser. 64 (2001), 755-768. DOI 10.1112/S0024610701002587 | MR 1865560 | Zbl 1023.53044
[12] Q.-M. Cheng, H. Nakagawa: Totally umbilic hypersurfaces. Hiroshima Math. J. 20 (1990), 1-10. DOI 10.32917/hmj/1206454435 | MR 1050421 | Zbl 0711.53045
[13] S.-Y. Cheng: Eigenvalue comparison theorems and its geometric applications. Math. Z. 143 (1975), 289-297. DOI 10.1007/BF01214381 | MR 0378001 | Zbl 0329.53035
[14] S. S. Chern, M. do Carmo, S. Kobayashi: Minimal submanifolds of a sphere with second fundamental form of constant length. Functional Analysis and Related Fields. Springer, New York (1970), 59-75. DOI 10.1007/978-3-642-48272-4_2 | MR 0273546 | Zbl 0216.44001
[15] A. A. de Barros, A. C. Brasil, Jr., L. A. M. de Sousa, Jr.: A new characterization of submanifolds with parallel mean curvature vector in $S^{n+p}$. Kodai Math. J. 27 (2004), 45-56. DOI 10.2996/kmj/1085143788 | MR 2042790 | Zbl 1059.53047
[16] E. L. de Lima, H. F. de Lima: A new optimal estimate for the first stability eigenvalue of closed hypersurfaces in Riemannian space forms. Rend. Circ. Mat. Palermo (2) 67 (2018), 533-537. DOI 10.1007/s12215-018-0332-3 | MR 3912008 | Zbl 1409.53054
[17] A. El Soufi, E. M. Harrell II., S. Ilias: Universal inequalities for the eigenvalues of Laplace and Schrödinger operators on submanifolds. Trans. Am. Math. Soc. 361 (2009), 2337-2350. DOI 10.1090/S0002-9947-08-04780-6 | MR 2471921 | Zbl 1162.58009
[18] H. B. Lawson, Jr.: Local rigidity theorems for minimal hypersurfaces. Ann. Math. 89 (1969), 187-197. DOI 10.2307/1970816 | MR 0238229 | Zbl 0174.24901
[19] J. Meléndez: Rigidity theorems for hypersurfaces with constant mean curvature. Bull. Braz. Math. Soc. (N.S.) 45 (2014), 385-404. DOI 10.1007/s00574-014-0055-9 | MR 3264798 | Zbl 1319.53065
[20] M. Okumura: Hypersurfaces and a pinching problem on the second fundamental tensor. Am. J. Math. 96 (1974), 207-213. DOI 10.2307/2373587 | MR 0353216 | Zbl 0302.53028
[21] O. Perdomo: First stability eigenvalue characterization of Clifford hypersurfaces. Proc. Am. Math. Soc. 130 (2002), 3379-3384. DOI 10.1090/S0002-9939-02-06451-1 | MR 1913017 | Zbl 1014.53036
[22] J. Simons: Minimal varieties in Riemannian manifolds. Ann. Math. (2) 88 (1968), 62-105. DOI 10.2307/1970556 | MR 0233295 | Zbl 0181.49702
[23] C. Wu: New characterizations of the Clifford tori and the Veronese surface. Arch. Math. 61 (1993), 277-284. DOI 10.1007/bf01198725 | MR 1231163 | Zbl 0791.53056

Affiliations:   Jiancheng Liu, Rong Mi (corresponding author), College of Mathematics and Statistics, Northwest Normal University, 967 Anning E Rd, Anning, Lanzhou 730070, Gansu, P. R. China, e-mail: liujc@nwnu.edu.cn, mr8231227@163.com


 
PDF available at: