Czechoslovak Mathematical Journal, Vol. 71, No. 3, pp. 709-742, 2021


Unconditional uniqueness of higher order nonlinear Schrödinger equations

Friedrich Klaus, Peer Kunstmann, Nikolaos Pattakos

Received February 25, 2020.   Published online April 20, 2021.

Abstract:  We show the existence of weak solutions in the extended sense of the Cauchy problem for the cubic fourth order nonlinear Schrödinger equation with the initial data $u_0\in X$, where $X\in\{M_{2,q}^s(\mathbb{R}), H^{\sigma}(\mathbb{T}), H^{s_1}(\mathbb{R})+H^{s_2}(\mathbb{T})\}$ and $q\in[1,2]$, $s\geq0$, or $\sigma\geq0$, or $s_2\geq s_1\geq0$. Moreover, if $M_{2,q}^s(\mathbb{R})\hookrightarrow L^3(\mathbb{R})$, or if $\sigma\geq\frac16$, or if $s_1\geq\frac16$ and $s_2>\frac12$ we show that the Cauchy problem is unconditionally wellposed in $X$. Similar results hold true for all higher order nonlinear Schrödinger equations and mixed order NLS due to a factorization property of the corresponding phase factors. For the proof we employ the normal form reduction via the differentiation by parts technique and build upon our previous work.
Keywords:  normal form method; modulation space; unconditional uniqueness; higher order nonlinear Schrödinger
Classification MSC:  35A01, 35A02, 35D30, 35J30


References:
[1] A. V. Babin, A. A. Ilyin, E. S. Titi: On the regularization mechanism for the periodic Korteweg-de Vries equation. Commun. Pure Appl. Math. 64 (2011), 591-648. DOI 10.1002/cpa.20356 | MR 2789490 | Zbl 1284.35365
[2] M. Ben-Artzi, H. Koch, J.-C. Saut: Dispersion estimates for fourth order Schrödinger equations. C. R. Acad. Sci., Paris, Sér. I, Math. 330 (2000), 87-92. DOI 10.1016/S0764-4442(00)00120-8 | MR 1745182 | Zbl 0942.35160
[3] Á. Bényi, K. Gröchenig, K. Okoudjou, L. G. Rogers: Unimodular Fourier multipliers for modulation spaces. J. Funct. Anal. 246 (2007), 366-384. DOI 10.1016/j.jfa.2006.12.019 | MR 2321047 | Zbl 1120.42010
[4] T. Boulenger, E. Lenzmann: Blowup for biharmonic NLS. Ann. Scient. Éc. Norm. Supér. (4) 50 (2017), 503-544. DOI 10.24033/asens.2326 | MR 3665549 | Zbl 1375.35476
[5] L. Chaichenets, D. Hundertmark, P. Kunstmann, N. Pattakos: Knocking out teeth in one-dimensional periodic nonlinear Schrödinger equation. SIAM J. Math. Anal. 51 (2019), 3714-3749. DOI 10.1137/19M1249679 | MR 4002719 | Zbl 1428.35492
[6] L. Chaichenets, D. Hundertmark, P. Kunstmann, N. Pattakos: Nonlinear Schrödinger equation, differentiation by parts and modulation spaces. J. Evol. Equ. 19 (2019), 803-843. DOI 10.1007/s00028-019-00501-z | MR 3997245 | Zbl 1428.35493
[7] L. Chaichenets, N. Pattakos: The global Cauchy problem for the NLS with higher order anisotropic dispersion. Glasg. Math. J. 63 (2021), 45-53. DOI 10.1017/S0017089519000491 | MR 4190068 | Zbl 07286310
[8] A. Choffrut, O. Pocovnicu: Ill-posedness for the cubic nonlinear half-wave equation and other fractional NLS on the real line. Int. Math. Res. Not. 2018 (2018), 699-738. DOI 10.1093/imrn/rnw246 | MR 3801444 | Zbl 1406.35461
[9] A. Chowdury, D. J. Kedziora, A. Ankiewicz, N. Akhmediev: Soliton solutions of an integrable nonlinear Schrödinger equation with quintic terms. Phys. Rev. E 90 (2014), Article ID 032922. DOI 10.1103/PhysRevE.90.032922
[10] M. Christ: Nonuniqueness of weak solutions of the nonlinear Schrödinger equation. Available at https://arxiv.org/abs/math/0503366 (2005), 13 pages.
[11] M. Christ: Power series solution of a nonlinear Schrödinger equation. Mathematical Aspects of Nonlinear Dispersive Equations. Annals of Mathematics Studies 163. Princeton University Press, Princeton (2007), 131-155. DOI 10.1515/9781400827794.131 | MR 2333210 | Zbl 1142.35084
[12] J. Colliander, T. Oh: Almost sure well-posedness of the cubic nonlinear Schrödinger equation below $L^2(\mathbb T)$. Duke Math. J. 161 (2012), 367-414. DOI 10.1215/00127094-1507400 | MR 2881226 | Zbl 1260.35199
[13] H. G. Feichtinger: Modulation spaces on locally compact abelian groups. Proceedings of International Conference on Wavelets and Applications 2002. New Delhi Allied Publishers, Delhi (2003), 99-140.
[14] G. Fibich, B. Ilan, G. Papanicolaou: Self-focusing with fourth-order dispersion. SIAM J. Appl. Math. 62 (2002), 1437-1462. DOI 10.1137/S0036139901387241 | MR 1898529 | Zbl 1003.35112
[15] M. Gubinelli: Rough solutions for the periodic Korteweg-de Vries equation. Commun. Pure Appl. Anal. 11 (2012), 709-733. DOI 10.3934/cpaa.2012.11.709 | MR 2861805 | Zbl 1278.35213
[16] S. Guo: On the 1D cubic nonlinear Schrödinger equation in an almost critical space. J. Fourier Anal. Appl. 23 (2017), 91-124. DOI 10.1007/s00041-016-9464-z | MR 3602811 | Zbl 1361.35165
[17] Z. Guo, S. Kwon, T. Oh: Poincaré-Dulac normal form reduction for unconditional well-posedness of the periodic cubic NLS. Commun. Math. Phys. 322 (2013), 19-48. DOI 10.1007/s00220-013-1755-5 | MR 3073156 | Zbl 1308.35270
[18] Z. Guo, T. Oh: Non-existence of solutions for the periodic cubic NLS below $L^2$. Int. Math. Res. Not. 2018 (2018), 1656-1729. DOI 3801473 | MR 3801473 | Zbl 1410.35199
[19] G. H. Hardy, E. M. Wright: An Introduction to the Theory of Numbers. Clarendon Press, New York (1979). MR 0568909 | Zbl 0423.10001
[20] S. Herr, V. Sohinger: Unconditional uniqueness results for the nonlinear Schrödinger equation. Commun. Contemp. Math. 21 (2019), Article ID 1850058, 33 pages. DOI 10.1142/S021919971850058X | MR 4017783 | Zbl 1428.35516
[21] Z.-Z. Kang, T.-C. Xia, W.-X. Ma: Riemann-Hilbert approach and $N$-soliton solution for an eighth-order nonlinear Schrödinger equation in an optical fiber. Adv. Difference Equ. 2019 (2019), Article ID 188, 14 pages. DOI 10.1186/s13662-019-2121-5 | MR 3950782 | Zbl 07057006
[22] V. I. Karpman: Stabilization of soliton instabilities by higher order dispersion: Fourth- order nonlinear Schrödinger type equations. Phys. Rev. E 53 (1996), 1336-1339. DOI 10.1103/PhysRevE.53.R1336
[23] V. I. Karpman, A. G. Shagalov: Stability of solitons described by nonlinear Schrödinger-type equations with higher-order dispersion. Physica D 144 (2000), 194-210. DOI 10.1016/S0167-2789(00)00078-6 | MR 1779828 | Zbl 0962.35165
[24] T. Kato: On nonlinear Schrödinger equations. II. $H^S$-solutions and unconditional well-posedness. J. Anal. Math. 67 (1995), 281-306. DOI 10.1007/BF02787794 | MR 1383498 | Zbl 0848.35124
[25] N. Kishimoto: Unconditional uniqueness of solutions for nonlinear dispersive equations. Available at https://arxiv.org/abs/1911.04349 (2019), 48 pages.
[26] A. Miyachi, F. Nicola, S. Rivetti, A. Tabacco, N. Tomita: Estimates for unimodular Fourier multipliers on modulation spaces. Proc. Am. Math. Soc. 137 (2009), 3869-3883. DOI 10.1090/S0002-9939-09-09968-7 | MR 2529896 | Zbl 1183.42013
[27] T. Oh, N. Tzvetkov: Quasi-invariant Gaussian measures for the cubic fourth order nonlinear Schrödinger equation. Probab. Theory Relat. Fields 169 (2017), 1121-1168. DOI 10.1007/s00440-016-0748-7 | MR 3719064 | Zbl 1382.35274
[28] T. Oh, Y. Wang: Global well-posedness of the periodic cubic fourth order NLS in negative Sobolev spaces. Forum Math. Sigma 6 (2018), Article ID e5, 80 pages. DOI 10.1017/fms.2018.4 | MR 3800620 | Zbl 1431.35178
[29] T. Oh, Y. Wang: On the ill-posedness of the cubic nonlinear Schrödinger equation on the circle. An. Ştiinţ. Univ. Al. I. Cuza Iaşi., Ser. Nouă, Mat. 64 (2018), 53-84. MR 3896809 | Zbl 1438.35397
[30] N. Pattakos: NLS in the modulation space $M_{2,q}(\mathbb R)$. J. Fourier Anal. Appl. 25 (2019), 1447-1486. DOI 10.1007/s00041-018-09655-9 | MR 3977124 | Zbl 1420.35372
[31] B. Pausader: The cubic fourth-order Schrödinger equation. J. Func. Anal. 256 (2009), 2473-2517. DOI 10.1016/j.jfa.2008.11.009 | MR 2502523 | Zbl 1171.35115
[32] B. Pausader, S. Shao: The mass-critical fourth-order Schrödinger equation in high dimensions. J. Hyperbolic Differ. Equ. 7 (2010), 651-705. DOI 10.1142/S0219891610002256 | MR 2746203 | Zbl 1232.35156
[33] Y. V. Sedletsky, I. S. Gandzha: A sixth-order nonlinear Schrödinger equation as a reduction of the nonlinear Klein-Gordon equation for slowly modulated wave trains. Nonlinear Dyn. 94 (2018), 1921-1932. DOI 10.1007/s11071-018-4465-x
[34] A. Vargas, L. Vega: Global wellposedness for 1D non-linear Schrödinger equation for data with an infinite $L^2$ norm. J. Math. Pures Appl., IX. Sér. 80 (2001), 1029-1044. DOI 10.1016/S0021-7824(01)01224-7 | MR 1876762 | Zbl 1027.35134
[35] B. Wang, H. Hudzik: The global Cauchy problem for the NLS and NLKG with small rough data. J. Differ. Equations 232 (2007), 36-73. DOI 10.1016/j.jde.2006.09.004 | MR 2281189 | Zbl 1121.35132
[36] Y. Yue, L. Huang, Y. Chen: Modulation instability, rogue waves and spectral analysis for the sixth-order nonlinear Schrödinger equation. Commun. Nonlinear Sci. Numer. Simul. 89 (2020), Article ID 105284, 14 pages. DOI 10.1016/j.cnsns.2020.105284 | MR 4099385 | Zbl 1454.35358

Affiliations:   Friedrich Klaus, Peer Kunstmann, Nikolaos Pattakos (corresponding author), Department of Mathematics, Institute for Analysis, Karlsruhe Institute of Technology (KIT), Englerstrasse 2, 76128 Karlsruhe, Germany, e-mail: friedrich.klaus@kit.edu, peer.kunstmann@kit.edu, nikolaos.pattakos@kit.edu


 
PDF available at: