Czechoslovak Mathematical Journal, Vol. 71, No. 4, pp. 975-989, 2021


Application of very weak formulation on homogenization of boundary value problems in porous media

Eduard Marušić-Paloka

Received April 22, 2020.   Published online April 27, 2021.

Abstract:  The goal of this paper is to present a different approach to the homogenization of the Dirichlet boundary value problem in porous medium. Unlike the standard energy method or the method of two-scale convergence, this approach is not based on the weak formulation of the problem but on the very weak formulation. To illustrate the method and its advantages we treat the stationary, incompressible Navier-Stokes system with the non-homogeneous Dirichlet boundary condition in periodic porous medium. The nonzero velocity trace on the boundary of a solid inclusion yields a non-standard addition to the source term in the Darcy law. In addition, the homogenized model is not incompressible.
Keywords:  homogenization; porous medium; Navier-Stokes system; very weak formulation
Classification MSC:  35B27, 76M50, 35Q30


References:
[1] G. Allaire: Homogenization of the Navier-Stokes equations in open sets perforated with tiny holes. I. Abstract framework, a volume distribution of holes. Arch. Ration. Mech. Anal. 113 (1991), 209-259. DOI 10.1007/BF00375065 | MR 1079189 | Zbl 0724.76020
[2] G. Allaire: Homogenization and two-scale convergence. SIAM J. Math. Anal. 23 (1992), 1482-1518. DOI 10.1137/0523084 | MR 1185639 | Zbl 0770.35005
[3] N. S. Bakhvalov, G. Panasenko: Homogenisation: Averaging Processes in Periodic Media. Mathematical Problems in the Mechanics of Composite Materials. Mathematics and Its Applications: Soviet Series 36. Kluwer Academic, Dordrecht (1989). DOI 10.1007/978-94-009-2247-1 | MR 1112788 | Zbl 0692.73012
[4] A. Capatina, H. Ene: Homogenisation of the Stokes problem with a pure non-homogeneous slip boundary condition by the periodic unfolding method. Eur. J. Appl. Math. 22 (2011), 333-345. DOI 10.1017/S0956792511000088 | MR 2812915 | Zbl 1227.35045
[5] D. Cioranescu, P. Donato, H. Ene: Homogenization of the Stokes problem with non-homogeneous slip boundary conditions. Math. Methods Appl. Sci. 19 (1996), 857-881. DOI 10.1002/(SICI)1099-1476(19960725)19:11<857::AID-MMA798>3.0.CO;2-D | MR 1399054 | Zbl 0869.35012
[6] D. Cioranescu, P. Donato, R. Zaki: The periodic unfolding method in perforated domains. Port. Math. (N.S.) 63 (2006), 467-496. MR 2287278 | Zbl 1119.49014
[7] C. Conca: Étude d'un fluide traversant une paroi perforée. I. Comportement limite près de la paroi. J. Math. Pures Appl., IX. Sér. 66 (1987), 1-43. (In French.) MR 0884812 | Zbl 0622.35061
[8] C. Conca: Étude d'un fluide traversant une paroi perforée. II. Comportement limite loin de la paroi. J. Math. Pures Appl., IX. Sér. 66 (1987), 45-69. (In French.) MR 0884813 | Zbl 0622.35062
[9] A. E. Craig, J. O. Dabiri, J. R. Koseff: A kinematic description of the key flow characteristics in an array of finite-height rotating cylinders. J. Fluids Eng. 138 (2016), Article ID 070906, 16 pages. DOI 10.1115/1.4032600
[10] L. Diening, E. Feireisl, Y. Lu: The inverse of the divergence operator on perforated domains with applications to homogenization problems for the compressible Navier-Stokes system. ESAIM, Control Optim. Calc. Var. 23 (2017), 851-868. DOI 10.1051/cocv/2016016 | MR 3660451 | Zbl 1375.35026
[11] R. Lipton, M. Avellaneda: Darcy's law for slow viscous flow past a stationary array of bubbles. Proc. R. Soc. Edinb., Sect. A 114 (1990), 71-79. DOI 10.1017/S0308210500024276 | MR 1051608 | Zbl 0850.76778
[12] E. Marušić-Paloka: Solvability of the Navier-Stokes system with $L^2$ boundary data. Appl. Math. Optimization 41 (2000), 365-375. DOI 10.1007/s002459911018 | MR 1739399 | Zbl 0952.35090
[13] E. Marušić-Paloka, A. Mikelić: The derivation of a nonlinear filtration law including the inertia effects via homogenization. Nonlinear Anal., Theory Methods Appl., Ser. A 42 (2000), 97-137. DOI 10.1016/S0362-546X(98)00346-0 | MR 1769255 | Zbl 0965.35131
[14] A. Mikelić, I. Aganović: Homogenization in a porous media under a nonhomgeneous boundary condition. Boll. Unione Mat. Ital., VII. Ser., A 1 (1987), 171-180. MR 0898276 | Zbl 0629.76102
[15] G. Nguetseng: A general convergence result for a functional related to the theory of homogenization. SIAM J. Math. Anal. 20 (1989), 608-623. DOI 10.1137/0520043 | MR 0990867 | Zbl 0688.35007
[16] E. Sanchez-Palencia: Non-Homogeneous Media and Vibration Theory. Lecture Notes in Physics 127. Springer, Berlin (1980). DOI 10.1007/3-540-10000-8 | MR 0578345 | Zbl 0432.70002

Affiliations:   Eduard Marušić-Paloka, Department of Mathematics, Faculty of Science and Mathematics, University of Zagreb, Bijenička 30, 10000 Zagreb, Croatia e-mail: emarusic@math.hr


 
PDF available at: