Czechoslovak Mathematical Journal, Vol. 71, No. 4, pp. 1099-1113, 2021


A variety of Euler's sum of powers conjecture

Tianxin Cai, Yong Zhang

Received May 22, 2020.   Published online May 10, 2021.

Abstract:  We consider a variety of Euler's sum of powers conjecture, i.e., whether the Diophantine system $$\cases n=a_1+a_2+\cdots+a_{s-1}, \\ a_1a_2\cdots a_{s-1}(a_1+a_2+\cdots+a_{s-1})=b^s \endcases$$ has positive integer or rational solutions $n$, $b$, $a_i$, $i=1,2,\cdots,s-1$, $s\geq3.$ Using the theory of elliptic curves, we prove that it has no positive integer solution for $s=3$, but there are infinitely many positive integers $n$ such that it has a positive integer solution for $s\geq4$. As a corollary, for $s\geq4$ and any positive integer $n$, the above Diophantine system has a positive rational solution. Meanwhile, we give conditions such that it has infinitely many positive rational solutions for $s\geq4$ and a fixed positive integer $n$.
Keywords:  Euler's sum of powers conjecture; elliptic curve; positive integer solution; positive rational solution
Classification MSC:  11D72, 11D41, 11G05


References:
[1] T. Cai, D. Chen: A new variant of the Hilbert-Waring problem. Math. Comput. 82 (2013), 2333-2341. DOI 10.1090/s0025-5718-2013-02685-3 | MR 3073204 | Zbl 1284.11127
[2] T. Cai, D. Chen, Y. Zhang: A new generalization of Fermat's last theorem. J. Number Theory 149 (2015), 33-45. DOI 10.1016/j.jnt.2014.09.014 | MR 3295999 | Zbl 1369.11026
[3] H. Cohen: Number Theory. Vol. I: Tools and Diophantine Equations. Graduate Texts in Mathematics 239. Springer, New York (2007). DOI 10.1007/978-0-387-49923-9 | MR 2312337 | Zbl 1119.11001
[4] N. D. Elkies: On $A^4+B^4+C^4=D^4$. Math. Comput. 184 (1988), 825-835. DOI 10.1090/S0025-5718-1988-0930224-9 | MR 930224 | Zbl 0698.10010
[5] R. K. Guy: Unsolved Problems in Number Theory. Problem Books in Mathematics. Springer, New York (2004). DOI 10.1007/978-1-4899-3585-4 | MR 2076335 | Zbl 1058.11001
[6] L. J. Lander, T. R. Parkin: Counterexample to Euler's conjecture on sums of like powers. Bull. Am. Math. Soc. 72 (1966), 1079. DOI 10.1090/S0002-9904-1966-11654-3 | MR 0197389 | Zbl 0145.04903
[7] Magma computational algebra system for algebra, number theory and geometry. Available at http://magma.maths.usyd.edu.au/magma/. SW 00540
[8] L. J. Mordell: Diophantine Equations. Pure and Applied Mathematics 30. Academic Press, London (1969). MR 0249355 | Zbl 0188.34503
[9] E. S. Rowland: Elliptic curve and integral solutions to $A^4+B^4+C^4=D^4$. Available at https://ericrowland.github.io/papers/Elliptic_curves_and_integral_solutions_to_A^4+B^4+C^4=D^4.pdf (2004), 7 pages.
[10] T. Skolem: Diophantische Gleichungen. Ergebnisse der Mathematik und ihrer Grenzgebiete 5. Springer, Berlin (1938). (In German.) Zbl 0018.29302
[11] M. Ulas: On some Diophantine systems involving symmetric polynomials. Math. Comput. 83 (2014), 1915-1930. DOI 10.1090/S0025-5718-2013-02778-0 | MR 3194135 | Zbl 1290.11064

Affiliations:   Tianxin Cai, School of Mathematical Sciences, Zhejiang University, 38 Zheda Rd, Hangzhou, 310027, P. R. China, e-mail: txcai@zju.edu.cn; Yong Zhang (corresponding author), School of Mathematics and Statistics, Changsha University of Science and Technology, Hunan Provincial Key Laboratory of Mathematical Modeling and Analysis in Engineering, 960, 2nd Section, Wanjiali RD (S), Changsha 410114, P. R. China, e-mail: zhangyongzju@163.com


 
PDF available at: