Czechoslovak Mathematical Journal, Vol. 71, No. 4, pp. 1149-1155, 2021


A note on arithmetic Diophantine series

Alexander E. Patkowski

Received July 23, 2020.   Published online June 30, 2021.

Abstract:  We consider an asymptotic analysis for series related to the work of Hardy and Littlewood (1923) on Diophantine approximation, as well as Davenport. In particular, we expand on ideas from some previous work on arithmetic series and the RH. To accomplish this, Mellin inversion is applied to certain infinite series over arithmetic functions to apply Cauchy's residue theorem, and then the remainder of terms is estimated according to the assumption of the RH. In the last section, we use simple properties of the fractional part function and its Fourier series to state some identities involving different arithmetic functions. We then discuss some of their individual properties, such as convergence, as well as implications related to known work.
Keywords:  arithmetic series; Riemann zeta function; Möbius function
Classification MSC:  11L20, 11M06


References:
[1] K. Chakraborty, S. Kanemitsu, H. Tsukada: Arithmetical Fourier series and the modular relation. Kyushu J. Math. 66 (2012), 411-427. DOI 10.2206/kyushujm.66.411 | MR 3051345 | Zbl 1334.11072
[2] H. Davenport: On some infinite series involving arithmetical functions. Q. J. Math., Oxf. Ser. 8 (1937), 8-13. DOI 10.1093/qmath/os-8.1.8 | Zbl 0016.20105
[3] G. H. Hardy, J. E. Littlewood: Contributions to the theory of the Riemann Zeta-function and the theory of the distribution of primes. Acta Math. 41 (1917), 119-196. DOI 10.1007/BF02422942 | MR 1555148 | JFM 46.0498.01
[4] G. H. Hardy, J. E. Littlewood: Some problems of Diophantine approximation: The analytic properties of certain Dirichlet's series associated with the distribution of numbers to modulus unity. Trans. Camb. Philos. Soc. 27 (1923), 519-534. JFM 49.0131.01
[5] H. Iwaniec, E. Kowalski: Analytic Number Theory. Colloquium Publications. American Mathematical Society 53. American Mathematical Society, Providence (2004). DOI 10.1090/coll/053 | MR 2061214 | Zbl 1059.11001
[6] H. L. Li, J. Ma, W. P. Zhang: On some Diophantine Fourier series. Acta Math. Sin., Engl. Ser. 26 (2010), 1125-1132. DOI 10.1007/s10114-010-8387-x | MR 2644050 | Zbl 1221.11060
[7] W. Luther: The differentiability of Fourier gap series and "Riemann's example" of a continuous, nondifferentiable function. J. Approximation Theory 48 (1986), 303-321. DOI 10.1016/0021-9045(86)90053-5 | MR 0864753 | Zbl 0626.42008
[8] R. B. Paris, D. Kaminski: Asymptotics and Mellin-Barnes Integrals. Encyclopedia of Mathematics and Its Applications 85. Cambridge University Press, Cambridge (2001). DOI 10.1017/CBO9780511546662 | MR 1854469 | Zbl 0983.41019
[9] S. L. Segal: On an identity between infinite series of arithmetic functions. Acta Arith. 28 (1976), 345-348. DOI 10.4064/aa-28-4-345-348 | MR 0387222 | Zbl 0319.10050
[10] E. C. Titchmarsh: The Theory of the Riemann Zeta-Function. Oxford Science Publications. Oxford University Press, Oxford (1986). MR 0882550 | Zbl 0601.10026

Affiliations:   Alexander E. Patkowski, 1390 Bumps River Rd., Centerville, MA 02632, USA, e-mail: alexpatk@hotmail.com, alexepatkowski@gmail.com


 
PDF available at: