Czechoslovak Mathematical Journal, Vol. 72, No. 1, pp. 111-124, 2022


Neighbor sum distinguishing list total coloring of IC-planar graphs without 5-cycles

Donghan Zhang

Received August 4, 2020.   Published online November 15, 2021.

Abstract:  Let $G=(V(G),E(G))$ be a simple graph and $E_G(v)$ denote the set of edges incident with a vertex $v$. A neighbor sum distinguishing (NSD) total coloring $\phi$ of $G$ is a proper total coloring of $G$ such that $\sum_{z\in E_G(u)\cup\{u\}}\phi(z)\neq\sum_{z\in E_G(v)\cup\{v\}}\phi(z)$ for each edge $uv\in E(G)$. Pilśniak and Woźniak asserted in 2015 that each graph with maximum degree $\Delta$ admits an NSD total $(\Delta+3)$-coloring. We prove that the list version of this conjecture holds for any IC-planar graph with $\Delta\geq11$ but without $5$-cycles by applying the Combinatorial Nullstellensatz.
Keywords:  IC-planar graph; neighbor sum distinguishing list total coloring; Combinatorial Nullstellensatz; discharging method
Classification MSC:  05C10, 05C15


References:
[1] M. O. Albertson: Chromatic number, independent ratio, and crossing number. Ars Math. Contemp. 1 (2008), 1-6. DOI 10.26493/1855-3974.10.2d0 | MR 2434266 | Zbl 1181.05032
[2] N. Alon: Combinatorial Nullstellensatz. Comb. Probab. Comput. 8 (1999), 7-29. DOI 10.1017/S0963548398003411 | MR 1684621 | Zbl 0920.05026
[3] J. A. Bondy, U. S. R. Murty: Graph Theory. Graduate Texts in Mathematics 244. Springer, Berlin (2008). DOI 10.1007/978-1-84628-970-5 | MR 2368647 | Zbl 1134.05001
[4] M. Pilśniak, M. Woźniak: On the total-neighbor-distinguishing index by sums. Graphs Comb. 31 (2015), 771-782. DOI 10.1007/s00373-013-1399-4 | MR 3338032 | Zbl 1312.05054
[5] C. Qu, G. Wang, G. Yan, X. Yu: Neighbor sum distinguishing total choosability of planar graphs. J. Comb. Optim. 32 (2016), 906-916. DOI 10.1007/s10878-015-9911-9 | MR 3544074 | Zbl 1348.05082
[6] C. Song, X. Jin, C. Xu: Neighbor sum distinguishing total coloring of IC-planar graphs with short cycle restrictions. Discrete Appl. Math. 279 (2020), 202-209. DOI 10.1016/j.dam.2019.12.023 | MR 4092640 | Zbl 1439.05095
[7] C. Song, C. Xu: Neighbor sum distinguishing total colorings of IC-planar graphs with maximum degree 13. J. Comb. Optim. 39 (2020), 293-303. DOI 10.1007/s10878-019-00467-1 | MR 4047108 | Zbl 1434.05057
[8] W. Song, Y. Duan, L. Miao: Neighbor sum distinguishing total coloring of triangle free IC-planar graphs. Acta Math. Sin., Engl. Ser. 36 (2020), 292-304. DOI 10.1007/s10114-020-9189-4 | MR 4072704 | Zbl 1439.05096
[9] W. Song, L. Miao, Y. Duan: Neighbor sum distinguishing total choosability of IC-planar graphs. Discuss. Math., Graph Theory 40 (2020), 331-344. DOI 10.7151/dmgt.2145 | MR 4041985 | Zbl 1430.05023
[10] J. Wang, J. Cai, B. Qiu: Neighbor sum distinguishing total choosability of planar graphs without adjacent triangles. Theor. Comput. Sci. 661 (2017), 1-7. DOI 10.1016/j.tcs.2016.11.003 | MR 3591208 | Zbl 1357.05027
[11] D. Yang, L. Sun, X. Yu, J. Wu, S. Zhou: Neighbor sum distinguishing total chromatic number of planar graphs with maximum degree 10. Appl. Math. Comput. 314 (2017), 456-468. DOI 10.1016/j.amc.2017.06.002 | MR 3683886 | Zbl 1426.05051

Affiliations:   Donghan Zhang, School of Mathematics and Statistics, Northwestern Polytechnical University, 1 Dongxiang Road, Chang'an District, Xi'an, Shaanxi 710129, P. R. China and School of Mathematics and Computer Application, Shangluo University, Shangluo, Shaanxi 726000, P. R. China, e-mail: zhang_dh@mail.nwpu.edu.cn


 
PDF available at: