Czechoslovak Mathematical Journal, first online, pp. 1-19


Gorenstein dimension of abelian categories arising from cluster tilting subcategories

Yu Liu, Panyue Zhou

Received September 19, 2019.   Published online February 3, 2021.

Abstract:  Let $\mathscr{C}$ be a triangulated category and $\mathscr{X}$ be a cluster tilting subcategory of $\mathscr{C}$. Koenig and Zhu showed that the quotient category $\mathscr{C}/\mathscr{X}$ is Gorenstein of Gorenstein dimension at most one. But this is not always true when $\mathscr{C}$ becomes an exact category. The notion of an extriangulated category was introduced by Nakaoka and Palu as a simultaneous generalization of exact categories and triangulated categories. Now let $\mathscr{C}$ be an extriangulated category with enough projectives and enough injectives, and $\mathscr{X}$ a cluster tilting subcategory of $\mathscr{C}$. We show that under certain conditions, the quotient category $\mathscr{C}/\mathscr{X}$ is Gorenstein of Gorenstein dimension at most one. As an application, this result generalizes the work by Koenig and Zhu.
Keywords:  extriangulated category; abelian category; cluster tilting subcategory; Gorenstein dimension
Classification MSC:  18G80, 18E10
DOI:  10.21136/CMJ.2021.0417-19

PDF available at:  Springer   Institute of Mathematics CAS

References:
[1] L. Demonet, Y. Liu: Quotients of exact categories by cluster tilting subcategories as module categories. J. Pure Appl. Algebra 217 (2013), 2282-2297. DOI 10.1016/j.jpaa.2013.03.007 | MR 3057311 | Zbl 1408.18021
[2] S. Koenig, B. Zhu: From triangulated categories to abelian categories: Cluster tilting in a general framework. Math. Z. 258 (2008), 143-160. DOI 10.1007/s00209-007-0165-9 | MR 2350040 | Zbl 1133.18005
[3] Y. Liu: Abelian quotients associated with fully rigid subcategories. Available at https://arxiv.org/abs/1902.07421 (2019), 14 pages.
[4] Y. Liu, H. Nakaoka: Hearts of twin cotorsion pairs on extriangulated categories. J. Algebra 528 (2019), 96-149. DOI 10.1016/j.jalgebra.2019.03.005 | MR 3928292 | Zbl 1419.18018
[5] H. Nakaoka, Y. Palu: Extriangulated categories, Hovey twin cotorsion pairs and model structures. Cah. Topol. Géom. Différ. Catég. 60 (2019), 117-193. MR 3931945 | Zbl 07088229
[6] P. Zhou, B. Zhu: Triangulated quotient categories revisited. J. Algebra 502 (2018), 196-232. DOI 10.1016/j.jalgebra.2018.01.031 | MR 3774890 | Zbl 1388.18014
[7] P. Zhou, B. Zhu: Cluster-tilting subcategories in extriangulated categories. Theory Appl. Categ. 34 (2019), 221-242. MR 3935450 | Zbl 1408.18029

Affiliations:   Yu Liu, School of Mathematics, Southwest Jiaotong University, 610031, 111 N 1st Section, 2nd Ring Rd, Sha Xi Mei Shi Yi Tiao Jie, Jinniu District, Chengdu, Sichuan, P. R. China, e-mail: liuyu86@swjtu.edu.cn; Panyue Zhou (corresponding author), College of Mathematics, Hunan Institute of Science and Technology, Xueyuan Rd, 414006, Yueyang, Hunan, P. R. China, e-mail: panyuezhou@163.com


 
PDF available at: