Czechoslovak Mathematical Journal, Vol. 72, No. 1, pp. 265-284, 2022


Some bounds for the annihilators of local cohomology and Ext modules

Ali Fathi

Received October 25, 2020.   Published online November 22, 2021.

Abstract:  Let $\mathfrak a$ be an ideal of a commutative Noetherian ring $R$ and $t$ be a nonnegative integer. Let $M$ and $N$ be two finitely generated $R$-modules. In certain cases, we give some bounds under inclusion for the annihilators of ${\rm Ext}^t_R(M, N)$ and ${\rm H}^t_{\mathfrak a}(M)$ in terms of minimal primary decomposition of the zero submodule of $M$, which are independent of the choice of minimal primary decomposition. Then, by using those bounds, we compute the annihilators of local cohomology and Ext modules in certain cases.
Keywords:  local cohomology module; Ext module; annihilator; primary decomposition
Classification MSC:  13D45, 13D07


References:
[1] A. Atazadeh, M. Sedghi, R. Naghipour: On the annihilators and attached primes of top local cohomology modules. Arch. Math. 102 (2014), 225-236. DOI 10.1007/s00013-014-0629-1 | MR 3181712 | Zbl 1292.13004
[2] A. Atazadeh, M. Sedghi, R. Naghipour: Cohomological dimension filtration and annihilators of top local cohomology modules. Colloq. Math. 139 (2015), 25-35. DOI 10.4064/cm139-1-2 | MR 3332732 | Zbl 1314.13033
[3] M. F. Atiyah, I. G. Macdonald: Introduction to Commutative Algebra. Addison-Wesley, Reading (1969). MR 0242802 | Zbl 0175.03601
[4] K. Bahmanpour: Annihilators of local cohomology modules. Commun. Algebra 43 (2015), 2509-2515. DOI 10.1080/00927872.2014.900687 | MR 3344203 | Zbl 1323.13003
[5] K. Bahmanpour, J. A'zami, G. Ghasemi: On the annihilators of local cohomology modules. J. Algebra 363 (2012), 8-13. DOI 10.1016/j.jalgebra.2012.03.026 | MR 2925842 | Zbl 1262.13027
[6] M. P. Brodmann, R. Y. Sharp: Local Cohomology: An Algebraic Introduction with Geometric Applications. Cambridge Studies in Advanced Mathematics 60. Cambridge University Press, Cambridge (1998). DOI 10.1017/CBO9780511629204 | MR 1613627 | Zbl 0903.13006
[7] W. Bruns, J. Herzog: Cohen-Macaulay Rings. Cambridge Studies in Advanced Mathematics 39. Cambridge University Press, Cambridge (1998). DOI 10.1017/CBO9780511608681 | MR 1251956 | Zbl 0909.13005
[8] L. Chu, Z. Tang, H. Tang: A note on almost Cohen-Macaulay modules. J. Algebra Appl. 14 (2015), Article ID 1550136, 7 pages. DOI 10.1142/S0219498815501364 | MR 3392585 | Zbl 1353.13018
[9] K. Divaani-Aazar, R. Naghipour, M. Tousi: Cohomological dimension of certain algebraic varieties. Proc. Am. Math. Soc. 130 (2002), 3537-3544. DOI 10.1090/S0002-9939-02-06500-0 | MR 1918830 | Zbl 0998.13007
[10] C. Huneke: Lectures on local cohomology. Interactions Between Homotopy Theory and Algebra Contemporary Mathematics 436. AMS, Providence (2007), 51-99. DOI 10.1090/conm/436 | MR 2355770 | Zbl 1127.13300
[11] L. R. Lynch: Annihilators of top local cohomology. Commun. Algebra 40 (2012), 542-551. DOI 10.1080/00927872.2010.533223 | MR 2889480 | Zbl 1251.13015
[12] H. Matsumura: Commutative Ring Theory. Cambridge Studies in Advanced Mathematics 8. Cambridge University Press, Cambridge (1986). DOI 10.1017/CBO9781139171762 | MR 0879273 | Zbl 0603.13001
[13] R. Y. Sharp: Gorenstein modules. Math. Z. 115 (1970), 117-139. DOI 10.1007/BF01109819 | MR 0263801 | Zbl 0186.07403
[14] R. Y. Sharp: On Gorenstein modules over a complete Cohen-Macaulay local ring. Q. J. Math., Oxf. II. Ser. 22 (1971), 425-434. DOI 10.1093/qmath/22.3.425  | MR 0289504 | Zbl 0221.13016

Affiliations:   Ali Fathi, Department of Mathematics, Zanjan Branch, Islamic Azad University, Zanjan, Iran, e-mail: fathi_ali@iauz.ac.ir, alif1387@gmail.com


 
PDF available at: