Czechoslovak Mathematical Journal, Vol. 72, No. 2, pp. 477-511, 2022


The Massera-Schäffer problem for a first order linear differential equation

Nina A. Chernyavskaya, Leonid A. Shuster

Received December 21, 2020.   Published online October 1, 2021.

Abstract:  We consider the Massera-Schäffer problem for the equation $-y'(x)+q(x)y(x)=f(x)$, $x\in\mathbb R$, where $f\in L_p^{\rm loc}(\mathbb R),$ $p\in[1,\infty)$ and $0\le q\in L_1^{\rm loc}(\mathbb R).$ By a solution of the problem we mean any function $y,$ absolutely continuous and satisfying the above equation almost everywhere in $\mathbb R.$ Let positive and continuous functions $\mu(x)$ and $\theta(x)$ for $x\in\mathbb R$ be given. Let us introduce the spaces $L_p(\mathbb R,\mu) =\biggl\{ f\in L_p^{\rm loc}(\mathbb R) \colon\|f\|_{L_p(\mathbb R,\mu)}^p=\int_{-\infty}^\infty|\mu(x)f(x)|^p {\rm d} x<\infty\biggr\}$, $L_p(\mathbb R,\theta) =\biggl\{f\in L_p^{\rm loc}(\mathbb R) \colon\|f\|_{L_p(\mathbb R,\theta)}^p=\int_{-\infty}^\infty|\theta(x)f(x)|^p {\rm d} x<\infty\biggr\}$. We obtain requirements to the functions $\mu$, $\theta$ and $q$ under which (1) for every function $f\in L_p(\mathbb R,\theta)$ there exists a unique solution $y\in L_p(\mathbb R,\mu)$ of the above equation; (2) there is an absolute constant $c(p)\in(0,\infty)$ such that regardless of the choice of a function $f\in L_p(\mathbb R,\theta)$ the solution of the above equation satisfies the inequality $\|y\|_{L_p(\mathbb R,\mu)}\le c(p)\|f\|_{L_p(\mathbb R,\theta)}$.
Keywords:  admissible space; first order linear differential equation
Classification MSC:  34A30


References:
[1] N. A. Chernyavskaya: Conditions for correct solvability of a simplest singular boundary value problem. Math. Nachr. 243 (2002), 5-18. DOI 10.1002/1522-2616(200209)243:1<5::AID-MANA5>3.0.CO;2-B | MR 1923831 | Zbl 1028.34018
[2] N. A. Chernyavskaya, L. A. Shuster: Conditions for correct solvability of a simplest singular boundary value problem of general form. I. Z. Anal. Anwend. 25 (2006), 205-235. DOI 10.4171/ZAA/1285 | MR 2229446 | Zbl 1122.34021
[3] N. A. Chernyavskaya, L. A. Shuster: Spaces admissible for the Sturm-Liouville equation. Commun. Pure Appl. Anal. 17 (2018), 1023-1052. DOI 10.3934/cpaa.2018050 | MR 3809112 | Zbl 1397.34052
[4] R. Courant: Differential and Integral Calculus. I. Blackie & Son, Glasgow (1945). DOI 10.1002/9781118033241 | MR 1009558 | Zbl 0018.30001
[5] A. Kufner, L.-E. Persson: Weighted Inequalities of Hardy Type. World Scientific, Singapore (2003). DOI 10.1142/5129 | MR 1982932 | Zbl 1065.26018
[6] M. Lukachev, L. Shuster: On uniqueness of the solution of a linear differential equation without boundary conditions. Funct. Differ. Equ. 14 (2007), 337-346. MR 2323215 | Zbl 1148.34303
[7] J. L. Massera, J. J. Schäffer: Linear Differential Equations and Function Spaces. Pure and Applied Mathematics 21. Academic Press, New York (1966). MR 0212324 | Zbl 0243.34107
[8] K. T. Mynbaev, M. O. Otelbaev: Weighted Function Spaces and the Spectrum of Differential Operators. Nauka, Moskva (1988). (In Russian.) MR 0950172 | Zbl 0651.46037
[9] E. C. Titchmarsh: The Theory of Functions. Clarendon Press, Oxford (1932). MR 3728294 | Zbl 0005.21004

Affiliations:   Nina A. Chernyavskaya, Department of Mathematics, Ben-Gurion University of the Negev, P. O. Box 653, Beer Sheva, 84105, Israel, e-mail: nina@math.bgu.ac.il; Leonid A. Shuster (corresponding author), Department of Mathematics, Bar-Ilan University, 52900 Ramat Gan, Israel, e-mail: miriam@math.biu.ac.il


 
PDF available at: