Czechoslovak Mathematical Journal, Vol. 73, No. 1, pp. 189-195, 2023


Root location for the characteristic polynomial of a Fibonacci type sequence

Zhibin Du, Carlos M. da Fonseca

Received February 5, 2022.   Published online November 4, 2022.

Abstract:  We analyse the roots of the polynomial $x^n-px^{n-1}-qx-1$ for $p\geqslant q\geqslant1$. This is the characteristic polynomial of the recurrence relation $F_{k,p,q}(n) = pF_{k,p,q}(n- 1) + qF_{k,p,q}(n-k + 1) + F_{k,p,q}(n-k)$ for $n \geqslant k$, which includes the relations of several particular sequences recently defined. In the end, a matricial representation for such a recurrence relation is provided.
Keywords:  Fibonacci number; root; characteristic polynomial
Classification MSC:  11A63, 11B39, 11J86


References:
[1] N. Bednarz: On $(k,p)$-Fibonacci numbers. Mathematics 9 (2021), Article ID 727, 13 pages. DOI 10.3390/math9070727
[2] C. M. da Fonseca: An identity between the determinant and the permanent of Hessenberg-type matrices. Czech. Math. J. 61 (2011), 917-921. DOI 10.1007/s10587-011-0059-1 | MR 2886247 | Zbl 1249.15011
[3] M. L. Glasser: The quadratic formula made hard: A less radical approach to solving equations. Available at https://arxiv.org/abs/math/9411224 (1994), 4 pages.
[4] M. Janjić: Determinants and recurrence sequences. J. Integer Seq. 15 (2012), Article ID 12.3.5, 21 pages. MR 2908736 | Zbl 1286.11017
[5] E. Kilic: The generalized order-$k$ Fibonacci-Pell sequence by matrix methods. J. Comput. Appl. Math. 209 (2007), 133-145. DOI 10.1016/j.cam.2006.10.071 | MR 2387120 | Zbl 1162.11013
[6] M. Merca: A note on the determinant of a Toeplitz-Hessenberg matrix. Spec. Matrices 1 (2013), 10-16. DOI 10.2478/spma-2013-0003 | MR 3155395 | Zbl 1291.15015
[7] N. Paja, I. Włoch: Some interpretations of the $(k,p)$-Fibonacci numbers. Commentat. Math. Univ. Carol. 62 (2021), 297-307. DOI 10.14712/1213-7243.2021.026 | MR 4331284 | Zbl 07442493
[8] A. Stakhov, B. Rozin: The "golden" algebraic equations. Chaos Solitons Fractals 27 (2006), 1415-1421. DOI 10.1016/j.chaos.2005.04.107 | MR 2164865 | Zbl 1148.11009
[9] A. Stakhov, B. Rozin: Theory of Binet formulas for Fibonacci and Lucas $p$-numbers. Chaos Solitons Fractals 27 (2006), 1162-1177. DOI 10.1016/j.chaos.2005.04.106 | MR 2164849 | Zbl 1178.11018
[10] P. Trojovský: On the characteristic polynomial of the generalized $k$-distance Tribonacci sequences. Mathematics 8 (2020), Article ID 1387, 8 pages. DOI 10.3390/math8081387
[11] P. Trojovský: On the characteristic polynomial of $(k,p)$-Fibonacci sequence. Adv. Difference Equ. 2021 (2021), Article ID 28, 9 pages. DOI 10.1186/s13662-020-03186-8 | MR 4197344 | Zbl 1485.11038
[12] L. Verde-Star: Polynomial sequences generated by infinite Hessenberg matrices. Spec. Matrices 5 (2017), 64-72. DOI 10.1515/spma-2017-0002 | MR 3602625 | Zbl 1360.15034
[13] I. Włoch: On generalized Pell numbers and their graph representations. Commentat. Math. 48 (2008), 169-175. MR 2482763 | Zbl 1175.05105

Affiliations:   Zhibin Du, School of Software, South China Normal University, Foshan, Guangdong 528225, P. R. China, e-mail: zhibindu@126.com, Carlos M. da Fonseca (corresponding author), Kuwait College of Science and Technology, P.O. Box 27235, Safat 13133, Kuwait; Chair of Computational Mathematics, University of Deusto, 48007 Bilbao, Spain, e-mail: c.dafonseca@kcst.edu.kw


 
PDF available at: