Czechoslovak Mathematical Journal, Vol. 72, No. 4, pp. 1145-1156, 2022


On the structure of the 2-Iwasawa module of some number fields of degree 16

Idriss Jerrari, Abdelmalek Azizi

Received October 22, 2021.   Published online April 26, 2022.

Abstract:  Let $K$ be an imaginary cyclic quartic number field whose 2-class group is of type $(2, 2, 2)$, i.e., isomorphic to $\mathbb{Z}/2\mathbb{Z}\times\mathbb{Z}/2\mathbb{Z}\times\mathbb{Z}/2\mathbb{Z}$. The aim of this paper is to determine the structure of the Iwasawa module of the genus field $K^{(*)}$ of $K$.
Keywords:  cyclic quartic field; cyclotomic $\mathbb Z_2$-extension; 2-Iwasawa module; 2-class group; 2-rank
Classification MSC:  11R16, 11R18, 11R20, 11R23, 11R29
DOI:  10.21136/CMJ.2022.0398-21


References:
[1] A. Azizi, I. Jerrari, A. Zekhnini, M. Talbi: On the second 2-class group $ Gal(K_2^{(2)}/K)$ of some imaginary quartic cyclic number field $K$. J. Number Theory 177 (2017), 562-588. DOI 10.1016/j.jnt.2017.01.027 | MR 3629256 | Zbl 1428.11190
[2] E. Brown, C. J. Parry: The 2-class group of certain biquadratic number fields. J. Reine Angew. Math. 295 (1977), 61-71. DOI 10.1515/crll.1977.295.61 | MR 0457398 | Zbl 0355.12007
[3] M. M. Chems-Eddin: The 2-Iwasawa module over certain octic elementary fields. Available at https://arxiv.org/abs/2007.05953 (2020), 4 pages.
[4] M. M. Chems-Eddin: The rank of the 2-class group of some fields with large degree. Available at https://arxiv.org/abs/2001.00865 (2020), 9 pages.
[5] G. Gras: Sur les $\ell$-classes d'idéaux dans les extensions cycliques relatives de degré premier $\ell$. I. Ann. Inst. Fourier 23 (1973), 1-48. (In French.) DOI 10.5802/aif.471 | MR 360519 | Zbl 0276.12013
[6] G. Gras: Class Field Theory: From Theory to Practice. Springer Monographs in Mathematics. Springer, Berlin (2003). DOI 10.1007/978-3-662-11323-3 | MR 1941965 | Zbl 1019.11032
[7] R. Greenberg: On the Iwasawa invariants of totally real number fields. Am. J. Math. 98 (1976), 263-284. DOI 10.2307/2373625 | MR 0401702 | Zbl 0334.12013
[8] M. Ishida: The Genus Fields of Algebraic Number Fields. Lecture Notes in Mathematics 555. Springer, Berlin (1976). DOI 10.1007/BFb0100829 | MR 435028 | Zbl 0353.12001
[9] Y. Kida: Cyclotomic $Z_2$-extensions of $J$-fields. J. Number Theory 14 (1982), 340-352. DOI 10.1016/0022-314X(82)90069-5 | MR 0660379 | Zbl 0493.12015
[10] F. Lemmermeyer: Reciprocity Laws: From Euler to Eisenstein. Springer Monographs in Mathematics. Springer, Berlin (2000). DOI 10.1007/978-3-662-12893-0 | MR 1761696 | Zbl 0949.11002
[11] K. Müller: Capitulation in the cyclotomic $Z_2$ extension of CM number fields. Math. Proc. Camb. Philos. Soc. 166 (2019), 371-380. DOI 10.1017/S0305004118000026 | MR 3903123 | Zbl 1462.11099
[12] L. C. Washington: Introduction to Cyclotomic Fields. Graduate Texts in Mathematics 83. Springer, New York (1997). DOI 10.1007/978-1-4612-1934-7 | MR 1421575 | Zbl 0966.11047

Affiliations:   Idriss Jerrari (corresponding author), Abdelmalek Azizi, Mohammed First University, Department of Mathematics, Faculty of Sciences, Mohammed V avenue, P.O.Box 524, Oujda 60000, Morocco, e-mail: idriss_math@hotmail.fr, abdelmalekazizi@yahoo.fr


 
PDF available at: