Czechoslovak Mathematical Journal, Vol. 72, No. 4, pp. 1157-1166, 2022


On the quasi-periodic $p$-adic Ruban continued fractions

Basma Ammous, Nour Ben Mahmoud, Mohamed Hbaib

Received October 28, 2021.   Published online July 28, 2022.

Abstract:  We study a family of quasi periodic $p$-adic Ruban continued fractions in the $p$-adic field $\mathbb{Q}_p$ and we give a criterion of a quadratic or transcendental $p$-adic number which based on the $p$-adic version of the subspace theorem due to Schlickewei.
Keywords:  continued fraction; $p$-adic number; transcendence; subspace theorem
Classification MSC:  11A55, 11D88, 11J81


References:
[1] B. Adamczewski, Y. Bugeaud: On the decimal expansion of algebraic numbers. Fiz. Mat. Fak. Moksl. Semin. Darb. 8 (2005), 5-13. MR 2191109 | Zbl 1138.11028
[2] B. Adamczewski, Y. Bugeaud: On the complexity of algebraic numbers. I. Expansions in integer bases. Ann. Math. (2) 165 (2007), 547-565. DOI 10.4007/annals.2007.165.547 | MR 2299740 | Zbl 1195.11094
[3] B. Adamczewski, Y. Bugeaud: On the Maillet-Baker continued fractions. J. Reine Angew. Math. 606 (2007), 105-121. DOI 10.1515/CRELLE.2007.036 | MR 2337643 | Zbl 1145.11054
[4] A. Baker: Continued fractions of transcendental numbers. Mathematika, Lond. 9 (1962), 1-8. DOI 10.1112/S002557930000303X | MR 0144853 | Zbl 0105.03903
[5] V. Laohakosol: A characterization of rational numbers by $p$-adic Ruban continued fractions. J. Aust. Math. Soc., Ser. A 39 (1985), 300-305. MR 0802720 | Zbl 0582.10021
[6] W. J. LeVeque: Topics in Number Theory. II. Addison-Wesley, Reading (1956). MR 0080682 | Zbl 0070.03804
[7] K. Mahler: Zur Approximation $p$-adischer Irrationalzahlen. Nieuw Arch. Wiskd. 18 (1934), 22-34. (In German.) Zbl 0009.20003
[8] E. Maillet: Introduction à la théorie des nombres transcendants et des propriétés arithmétiques des fonctions. Gauthier-Villars, Paris (1906). (In French.) JFM 37.0237.02
[9] J. Neukirch: Algebraic Number Theory. Grundlehren der Mathematischen Wissenschaften 322. Springer, Berlin (1999). DOI 10.1007/978-3-662-03983-0 | MR 1697859 | Zbl 0956.11021
[10] T. Ooto: Transcendental $p$-adic continued fractions. Math. Z. 287 (2017), 1053-1064. DOI 10.1007/s00209-017-1859-2 | MR 3719527 | Zbl 1388.11040
[11] A. A. Ruban: Some metric properties of $p$-adic numbers. Sib. Math. J. 11 (1970), 176-180. DOI 10.1007/BF00970247 | MR 0260700 | Zbl 0213.32701
[12] H. P. Schlickewei: The $p$-adic Thue-Siegel-Roth-Schmidt theorem. Arch. Math. 29 (1977), 267-270. DOI 10.1007/BF01220404 | MR 0491529 | Zbl 0365.10026
[13] W. M. Schmidt: Diophantine Approximation. Lecture Notes in Mathematics 785. Springer, Berlin (1980). DOI 10.1007/978-3-540-38645-2 | MR 0568710 | Zbl 0421.10019
[14] L. Wang: $P$-adic continued fractions. I. Sci. Sin., Ser. A 28 (1985), 1009-1017. MR 0866457 | Zbl 0628.10036

Affiliations:   Basma Ammous, Nour Ben Mahmoud, Mohamed Hbaib (corresponding author), University of Sfax, Faculty of Sciences, Departement of Mathematics, Route de l'Aéroport Km 0.5, BP 1169.3029 Sfax, Tunisia, e-mail: basma.ammous@fss.usf.tn, nour.benmahmoud23@gmail.com, mohamed.hbaieb@fss.usf.tn


 
PDF available at: