Czechoslovak Mathematical Journal, Vol. 73, No. 1, pp. 177-188, 2023


On the least almost-prime in arithmetic progression

Jinjiang Li, Min Zhang, Yingchun Cai

Received December 28, 2021.   Published online October 31, 2022.

Abstract:  Let $\mathcal{P}_r$ denote an almost-prime with at most $r$ prime factors, counted according to multiplicity. Suppose that $a$ and $q$ are positive integers satisfying $(a,q)=1$. Denote by $\mathcal{P}_2(a,q)$ the least almost-prime $\mathcal{P}_2$ which satisfies $\mathcal{P}_2\equiv a\pmod q$. It is proved that for sufficiently large $q$, there holds $\mathcal{P}_2(a,q)\ll q^{1.8345}.$ This result constitutes an improvement upon that of Iwaniec (1982), who obtained the same conclusion, but for the range 1.845 in place of 1.8345.
Keywords:  almost-prime; arithmetic progression; linear sieve; Selberg's $\Lambda^2$-sieve
Classification MSC:  11N13, 11N35, 11N36


References:
[1] H. Halberstam, H.-E. Richert: Sieve Methods. London Mathematical Society Monographs 4. Academic Press, London (1974). MR 0424730 | Zbl 0298.10026
[2] H. Iwaniec: A new form of the error term in the linear sieve. Acta Arith. 37 (1980), 307-320. DOI 10.4064/aa-37-1-307-320 | MR 0598883 | Zbl 0444.10038
[3] H. Iwaniec: On the Brun-Titchmarsh theorem. J. Math. Soc. Japan 34 (1982), 95-123. DOI 10.2969/jmsj/03410095 | MR 0639808 | Zbl 0486.10033
[4] W. B. Jurkat, H.-E. Richert: An improvement of Selberg's sieve method. I. Acta Arith. 11 (1965), 217-240. DOI 10.4064/aa-11-2-217-240 | MR 0202680 | Zbl 0128.26902
[5] B. V. Levin: On the least almost prime number in an arithmetic progression and the sequence $k^2x^2+1$. Usp. Mat. Nauk 20 (1965), 158-162. (In Russian.) MR 0188173 | Zbl 0154.30002
[6] F. Mertens: Ein Beitrag zur analytischen Zahlentheorie: Über die Vertheilung der Primzahlen. J. Reine Angew. Math. 78 (1874), 46-63. (In German.) DOI 10.1515/crll.1874.78.46 | MR 1579612 | JFM 06.0116.01
[7] Y. Motohashi: On almost-primes in arithmetic progressions. III. Proc. Japan Acad. 52 (1976), 116-118. DOI 10.3792/pja/1195518371 | MR 0412128 | Zbl 0361.10039
[8] C. D. Pan, C. B. Pan: Goldbach Conjecture. Science Press, Beijing (1992). MR 1287852 | Zbl 0849.11080
[9] E. C. Titchmarsh: A divisor problem. Rend. Circ. Mat. Palermo 54 (1930), 414-429. DOI 10.1007/BF03021203 | JFM 56.0891.01

Affiliations:   Jinjiang Li, Department of Mathematics, China University of Mining and Technology, Beijing 100083, P. R. China, e-mail: jinjiang.li.math@gmail.com; Min Zhang (corresponding author), School of Applied Science, Beijing Information Science and Technology University, Beijing 100192, P. R. China, e-mail: min.zhang.math@gmail.com; Yingchun Cai, School of Mathematical Science, Tongji University, Shanghai 200092, P. R. China, e-mail: yingchuncai@tongji.edu.cn


 
PDF available at: