Czechoslovak Mathematical Journal, Vol. 73, No. 2, pp. 321-333, 2023


$S$-shaped component of nodal solutions for problem involving one-dimension mean curvature operator

Ruyun Ma, Zhiqian He, Xiaoxiao Su

Received January 20, 2020.   Published online March 8, 2023.

Abstract:  Let $E=\{u\in C^1[0,1] \colon u(0)=u(1)=0\}$. Let $S_k^\nu$ with $\nu=\{+, -\}$ denote the set of functions $u\in E$ which have exactly $k-1$ interior nodal zeros in (0, 1) and $\nu u$ be positive near $0$. We show the existence of $S$-shaped connected component of $S_k^\nu$-solutions of the problem $\begin{cases}\biggl(\frac{u'}{\sqrt{1-u'^2}}\bigg)^{\prime}+\lambda a(x) f(u)=0, & x\in(0,1),\\ u(0)=u(1)=0, & \end{cases}$ where $\lambda>0$ is a parameter, $a\in C([0, 1], (0,\infty))$. We determine the intervals of parameter $\lambda$ in which the above problem has one, two or three $S_k^\nu$-solutions. The proofs of the main results are based upon the bifurcation technique.
Keywords:  mean curvature operator; $S_k^\nu$-solution; bifurcation; Sturm-type comparison theorem
Classification MSC:  34C23, 35J65, 35B40, 34C10


References:
[1] R. Bartnik, L. Simon: Spacelike hypersurfaces with prescribed boundary values and mean curvature. Commun. Math. Phys. 87 (1982), 131-152. DOI 10.1007/BF01211061 | MR 0680653 | Zbl 0512.53055
[2] C. Bereanu, P. Jebelean, P. J. Torres: Multiple positive radial solutions for a Dirichlet problem involving the mean curvature operator in Minkowski space. J. Funct. Anal. 265 (2013), 644-659. DOI 10.1016/j.jfa.2013.04.006 | MR 3062540 | Zbl 1285.35051
[3] C. Bereanu, P. Jebelean, P. J. Torres: Positive radial solutions for Dirichlet problems with mean curvature operators in Minkowski space. J. Funct. Anal. 264 (2013), 270-287. DOI 10.1016/j.jfa.2012.10.010 | MR 2995707 | Zbl 1336.35174
[4] A. Boscaggin, M. Garrione: Pairs of nodal solutions for a Minkowski-curvature boundary value problem in a ball. Commun. Contemp. Math. 21 (2019), Artile ID 1850006, 18 pages. DOI 10.1142/S0219199718500062 | MR 3918043 | Zbl 1416.35096
[5] S.-Y. Cheng, S.-T. Yau: Maximal space-like hypersurfaces in the Lorentz-Minkowski spaces. Ann. Math. (2) 104 (1976), 407-419. DOI 10.2307/1970963 | MR 0431061 | Zbl 0352.53021
[6] I. Coelho, C. Corsato, F. Obersnel, P. Omari: Positive solutions of the Dirichlet problem for the one-dimensional Minkowski-curvature equation. Adv. Nonlinear Stud. 12 (2012), 621-638. DOI 10.1515/ans-2012-0310 | MR 2976056 | Zbl 1263.34028
[7] C. Corsato, F. Obersnel, P. Omari, S. Rivetti: Positive solutions of the Dirichlet problem for the prescribed mean curvature equation in Minkowski space. J. Math. Anal. Appl. 405 (2013), 227-239. DOI 10.1016/j.jmaa.2013.04.003 | MR 3053503 | Zbl 1310.35140
[8] G. Dai: Global structure of one-sign solutions for problem with mean curvature operator. Nonlinearity 31 (2018), 5309-5328. DOI 10.1088/1361-6544/aadf43 | MR 3867236
[9] G. Dai, J. Wang: Nodal solutions to problem with mean curvature operator in Minkowski space. Differ. Integral Equ. 30 (2017), 463-480. DOI 10.57262/die/1489802422 | MR 3626584 | Zbl 1424.35187
[10] E. N. Dancer: On the structure of solutions of non-linear eigenvalue problems. Indiana Univ. Math. J. 23 (1974), 1069-1076. DOI 10.1512/iumj.1974.23.23087 | MR 0348567 | Zbl 0276.47051
[11] R. P. Feynman, R. B. Leighton, M. Sands: The Feynman Lectures on Physics. II.: Mainly Electromagnetism and Matter. Addison-Wesley, Reading (1964). MR 0213078 | Zbl 0131.38703
[12] S.-Y. Huang: Classification and evolution of bifurcation curves for the one-dimensional Minkowski-curvature problem and its applications. J. Differ. Equations 264 (2018), 5977-6011. DOI 10.1016/j.jde.2018.01.021 | MR 3765772 | Zbl 1390.34051
[13] E. H. Hutten: Relativistic (non-linear) oscillator. Nature, London 205 (1965), 892. DOI 10.1038/205892a0 | Zbl 0125.19603
[14] J. Jaroš, T. Kusano: A Picone type identity for second-order half-linear differential equations. Acta Math. Univ. Comen., New Ser. 68 (1999), 137-151. MR 1711081 | Zbl 0926.34023
[15] H. J. Li, C. C. Yeh: Sturmian comparison theorem for half-linear second-order differential equations. Proc. R. Soc. Edinb., Sect. A 125 (1995), 1193-1204. DOI 10.1017/s0308210500030468 | MR 1362999 | Zbl 0873.34020
[16] Y.-H. Liang, S.-H. Wang: Classification and evolution of bifurcation curves for the one-dimensional perturbed Gelfand equation with mixed boundary conditions. J. Differ. Equations 260 (2016), 8358-8387. DOI 10.1016/j.jde.2016.02.021 | MR 3482686 | Zbl 1336.34029
[17] R. Ma, H. Gao, Y. Lu: Global structure of radial positive solutions for a prescribed mean curvature problem in a ball. J. Funct. Anal. 270 (2016), 2430-2455. DOI 10.1016/j.jfa.2016.01.020 | MR 3464046 | Zbl 1342.34044
[18] R. Ma, M. Xu: $S$-shaped connected component for a nonlinear Dirichlet problem involving mean curvature operator in one-dimension Minkowski space. Bull. Korean Math. Soc. 55 (2018), 1891-1908. DOI 10.4134/BKMS.b180011 | MR 3890911 | Zbl 1414.34020
[19] L. A. MacColl: Theory of the relativistic oscillator. Am. J. Phys. 25 (1957), 535-538. DOI 10.1119/1.1934543 | MR 0089059 | Zbl 0078.18904
[20] T. Shibata: $S$-shaped bifurcation curves for nonlinear two-parameter problems. Nonlinear Anal., Theory Methods Appl., Ser. A 95 (2014), 796-808. DOI 10.1016/j.na.2013.10.015 | MR 3130562 | Zbl 1296.34100
[21] I. Sim, S. Tanaka: Three positive solutions for one-dimensional $p$-Laplacian problem with sign-changing weight. Appl. Math. Lett. 49 (2015), 42-50. DOI 10.1016/j.aml.2015.04.007 | MR 3361694 | Zbl 1342.35122
[22] W. Walter: Ordinary Differential Equations. Graduate Texts in Mathematics 182. Springer, New York (1998). DOI 10.1007/978-1-4612-0601-9 | MR 1629775 | Zbl 0991.34001

Affiliations:   Ruyun Ma (corresponding author), Department of Mathematics, Northwest Normal University, 967 Anning E. Road, Lanzhou 730070, P. R. China, e-mail: mary@nwnu.edu.cn; Zhiqian He, Department of Mathematics, Northwest Normal University, 967 Anning E. Road, Lanzhou 730070, P. R. China and School of Mathematics and Physics, Qinghai University, Xining 810016, P. R. China, e-mail: zhiqianhe1987@163.com; Xiaoxiao Su, School of Mathematics and Statistics, Xidian University, No. 2 South Taibai Road, Xi'an, Shaanxi 710071, P. R. China, e-mail: suxiaoxiao2856@163.com


 
PDF available at: