Czechoslovak Mathematical Journal, Vol. 73, No. 2, pp. 355-366, 2023


Exponential stability conditions for non-autonomous differential equations with unbounded commutators in a Banach space

Michael Gil'

Received May 18, 2021.   Published online January 23, 2023.

Abstract:  We consider the equation ${\rm d}y(t)/{\rm d}t=(A+B(t))y(t)$ $(t\ge0)$, where $A$ is the generator of an analytic semigroup $({\rm e}^{At})_{t\ge0}$ on a Banach space ${\cal X}$, $B(t)$ is a variable bounded operator in ${\cal X}$. It is assumed that the commutator $K(t)=AB(t)-B(t)A$ has the following property: there is a linear operator $S$ having a bounded left-inverse operator $S_l^{-1}$ such that $\|S {\rm e}^{At}\|$ is integrable and the operator $K(t)S_l^{-1}$ is bounded. Under these conditions an exponential stability test is derived. As an example we consider a coupled system of parabolic equations.
Keywords:  Banach space; differential equation; linear nonautonomous equation; exponential stability; commutator; parabolic equation
Classification MSC:  47D06, 35K51, 35B35, 34G10


References:
[1] F. Alabau, P. Cannarsa, V. Komornik: Indirect internal stabilization of weakly coupled evolution equations. J. Evol. Equ. 2 (2002), 127-150. DOI 10.1007/s00028-002-8083-0 | MR 1914654 | Zbl 1011.35018
[2] D. Andrica, T. M. Rassias (eds.): Differential and Integral Inequalities. Springer Optimization and Its Applications 151. Springer, Cham (2019). DOI 10.1007/978-3-030-27407-8 | MR 3972115 | Zbl 1431.26003
[3] C. Chicone, Y. Latushkin: Evolution Semigrous in Dynamical Systems and Differential Equations. Mathematical Survey and Monographs 70. AMS, Providence (1999). DOI 10.1090/surv/070 | MR 1707332 | Zbl 0970.47027
[4] A. Cialdea, F. Lanzara: Stability of solutions of evolution equations. Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat., IX. Ser., Rend. Lincei, Mat. Appl. 24 (2013), 451-469. DOI 10.4171/RLM/661 | MR 3129748 | Zbl 1282.35057
[5] R. F. Curtain, J. C. Oostveen: Necessary and sufficient conditions for strong stability of distributed parameter systems. Syst. Control Lett. 37 (1999), 11-18. DOI 10.1016/S0167-6911(98)00109-1 | MR 1752433 | Zbl 0917.93059
[6] Y. L. Daleckii, M. G. Krein: Stability of Solutions of Differential Equations in Banach Space. Translations of Mathematical Monographs 43. AMS, Providence (1974). DOI 10.1090/mmono/043 | MR 0352639 | Zbl 0286.34094
[7] V. Dragan, T. Morozan: Criteria for exponential stability of linear differential equations with positive evolution on ordered Banach spaces. IMA J. Math. Control Inf. 27 (2010), 267-307. DOI 10.1093/imamci/dnq013 | MR 2721169 | Zbl 1222.34066
[8] N. Fourrier, I. Lasiecka: Regularity and stability of a wave equation with a strong damping and dynamic boundary conditions. Evol. Equ. Control Theory 2 (2013), 631-667. DOI 10.3934/eect.2013.2.631 | MR 3177247 | Zbl 1277.35232
[9] M. Gil': Integrally small perturbations of semigroups and stability of partial differential equations. Int. J. Partial Differ. Equ. 2013 (2013), Article ID 207581, 5 pages. DOI 10.1155/2013/207581 | Zbl 1304.35090
[10] M. I. Gil': Operator Functions and Operator Equations. World Scientific, Hackensack (2018). DOI 10.1142/10482 | MR 3751395 | Zbl 1422.47004
[11] M. I. Gil': Stability of evolution equations with small commutators in a Banach space. Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat., IX. Ser., Rend. Lincei, Mat. Appl. 29 (2018), 589-596. DOI 10.4171/RLM/822 | MR 3896255 | Zbl 07032412
[12] M. I. Gil': Stability of linear equations with differentiable operators in a Hilbert space. IMA J. Math. Control Inf. 37 (2020), 19-26. DOI 10.1093/imamci/dny035 | MR 4073909 | Zbl 1436.93115
[13] D. Henry: Geometric Theory of Semilinear Parabolic Equations. Lectures Notes in Mathematics 840. Springer, Berlin (1981). DOI 10.1007/BFb0089647 | MR 0610244 | Zbl 0456.35001
[14] S. G. Krein: Linear Differential Equations in Banach Space. Translations of Mathematical Monographs 29. AMS, Providence (1972). DOI 10.1090/mmono/029 | MR 0342804 | Zbl 0229.34050
[15] H. Laasri, O. El-Mennaoui: Stability for non-autonomous linear evolution equations with $L^p$-maximal regularity. Czech. Math. J. 63 (2013), 887-908. DOI 10.1007/s10587-013-0060-y | MR 3165503 | Zbl 1313.35203
[16] S. Nicaise: Convergence and stability analyses of hierarchic models of dissipative second order evolution equations. Collect. Math. 68 (2017), 433-462. DOI 10.1007/s13348-017-0192-8 | MR 3683020 | Zbl 1375.35047
[17] J. Oostveen: Strongly Stabilizable Distributed Parameter Systems. Frontiers in Applied Mathematics 20. SIAM, Philadelphia (2000). DOI 10.1137/1.9780898719864 | MR 1773377 | Zbl 0964.93004
[18] P. Pucci, J. Serrin: Asymptotic stability for nonautonomous dissipative wave systems. Commun. Pure Appl. Math. 49 (1996), 177-216. DOI 10.1002/(SICI)1097-0312(199602)49:2<177::AID-CPA3>3.0.CO;2-B | MR 1371927 | Zbl 0865.35089

Affiliations:   Michael Gil', Department of Mathematics, Ben Gurion University of the Negev, P.0. Box 653, Beer-Sheva 84105, Israel, e-mail: gilmi@bezeqint.net


 
PDF available at: