Czechoslovak Mathematical Journal, first online, pp. 1-25


The origin and developments of Kurzweil's generalized Riemann integral

Jean Mawhin

Received April 24, 2023.   Published online December 4, 2023.

Abstract:  The paper describes to origin and motivation of Kurzweil in introducing a Riemann-type definition for generalized Perron integrals and his further contributions to the topics.
Keywords:  Henstock-Kurzweil integral; divergence theorem; Denjoy-Perron integral; averaging method; Kurzweil generalized differential equation
Classification MSC:  28-02, 26B20, 01A70, 26A39

PDF available at:  Springer   Institute of Mathematics CAS

References:
[1] N. N. Bogolyubov, Y. A. Mitropol'skij: Asymptotic Methods in the Theory of Nonlinear Oscillations. International Monographs on Advanced Mathematics and Physics. Gordon and Breach, New York (1961). MR 0141845 | Zbl 0151.12201
[2] B. Bongiorno: A new integral for the problem of antiderivatives. Matematiche 51 (1996), 299-313. (In Italian.) MR 1488074 | Zbl 0929.26007
[3] B. Bongiorno, W. F. Pfeffer: A concept of absolute continuity and a Riemann type integral. Commentat. Math. Univ. Carol. 33 (1992), 189-196. MR 1189651 | Zbl 0776.26011
[4] E. M. Bonotto, M. Federson, J. G. Mesquita (eds.): Generalized Ordinary Differential Equations in Abstract Spaces and Applications. John Wiley & Sons, Hoboken (2021). DOI 10.1002/9781119655022 | MR 4485103 | Zbl 1475.34001
[5] C. Carathéodory: Vorlesungen über reelle Funktionen. B. G. Teubner, Leipzig (1918). (In German.) MR 0225940 | JFM 46.0376.12
[6] A.-L. Cauchy: Résumé des leçons données a l'École Royale Polytechnique, sur le calcul infinitésimal. Tome premier. De l'Imprimerie Royale, Paris (1823). (In French.)
[7] A.-L. Cauchy: Équations différentielles ordinaires: Cours inédit, fragment. Études vivantes. Johnson Reprint, Paris (1981). (In French.) MR 1013996 | Zbl 0558.01039
[8] P. Cousin: Sur les fonctions de $n$ variables complexes. Acta Math. 19 (1895), 1-61. (In French.) DOI 10.1007/BF02402869 | MR 1554861 | JFM 26.0456.02
[9] A. Denjoy: Une extension de l'intégrale de M. Lebesgue. C. R. Acad. Sci., Paris 154 (1912), 859-862. (In French.) JFM 43.0360.01
[10] T. De Pauw: Autour du théorème de la divergence. Autour du centenaire Lebesgue Panoramas & Synthèses 18. Société Mathématique de France, Paris (2004), 85-121. (In French.) MR 2143414 | Zbl 1105.26011
[11] L. Euler: Institutiones calculi integralis. Volumen primum. Imperial Academy of Sciences, St. Petersburg (1768). (In Latin.) JFM 44.0011.01
[12] P. Fatou: Sur le mouvement d'un système soumis à des forces à courte période. Bull. Soc. Math. Fr. 56 (1928), 98-139. (In French.) DOI 10.24033/bsmf.1131 | MR 1504928 | JFM 54.0834.01
[13] A. Fonda: The Kurzweil-Henstock Integral for Undergraduates: A Promenade Along the Marvelous Theory of Integration. Compact Textbooks in Mathematics. Birkhäuser, Cham (2018). DOI 10.1007/978-3-319-95321-2 | MR 3839629 | Zbl 1410.26007
[14] I. I. Gichman: Concerning a theorem of N. N. Bogolyubov. Ukr. Mat. Zh. 4 (1952), 215-219. (In Russian.) MR 0075386 | Zbl 0049.34503
[15] R. Henstock: Definitions of Riemann type of the variational integrals. Proc. Lond. Math. Soc., III. Ser. 11 (1961), 402-418. DOI 10.1112/plms/s3-11.1.402 | MR 0132147 | Zbl 0099.27402
[16] J. Jarník, P. Krejčí, A. Slavík, M. Tvrdý, I. Vrkoč: Ninety years of Jaroslav Kurzweil. Math. Bohem. 141 (2016), 115-128. DOI 10.21136/MB.2016.10 | MR 3499779 | Zbl 1389.01013
[17] J. Jarník, J. Kurzweil: A non absolutely convergent integral which admits transformation and can be used for integration on manifolds. Czech. Math. J. 35 (1985), 116-139. DOI 10.21136/CMJ.1985.102001 | MR 0779340 | Zbl 0614.26007
[18] J. Jarník, J. Kurzweil: A new and more powerful concept of the PU-integral. Czech. Math. J. 38 (1988), 8-48. DOI 10.21136/CMJ.1988.102199 | MR 0925939 | Zbl 0669.26006
[19] J. Jarník, J. Kurzweil: Pfeffer integrability does not imply $M_1$-integrability. Czech. Math. J. 44 (1994), 47-56. DOI 10.21136/CMJ.1994.128454 | MR 1257935 | Zbl 0810.26009
[20] J. Jarník, J. Kurzweil: Perron-type integration on $n$-dimensional intervals and its properties. Czech. Math. J. 45 (1995), 79-106. DOI 10.21136/CMJ.1995.128500 | MR 1371683 | Zbl 0832.26009
[21] J. Jarník, J. Kurzweil: Another Perron type integration in $n$ dimensions as an extension of integration of stepfunctions. Czech. Math. J. 47 (1997), 557-575. DOI 10.1023/A:1022423803986 | MR 1461432 | Zbl 0902.26006
[22] J. Jarník, J. Kurzweil, Š. Schwabik: On Mawhin's approach to multiple nonabsolutely convergent integral. Čas. Pěst. Mat. 108 (1983), 356-380. DOI 10.21136/CPM.1983.118183 | MR 0727536 | Zbl 0555.26004
[23] J. Jarník, Š. Schwabik: Jaroslav Kurzweil septuagenarian. Czech. Math. J. 46 (1996), 375-382. DOI 10.21136/CMJ.1996.127300 | MR 1388626 | Zbl 0870.01012
[24] J. Jarník, Š. Schwabik, M. Tvrdý, I. Vrkoč: Sixty years of Jaroslav Kurzweil. Czech. Math. J. 36 (1986), 147-166. DOI 10.21136/CMJ.1986.102076 | MR 0822877 | Zbl 0596.01029
[25] J. Jarník, Š. Schwabik, M. Tvrdý, I. Vrkoč: Eighty years of Jaroslav Kurzweil. Math. Bohem. 131 (2006), 113-143. DOI 10.21136/MB.2006.134088 | MR 2242840 | Zbl 1106.01319
[26] M. A. Krasnosel'skii, S. G. Krejn: On the principle of averaging in nonlinear mechanics. Usp. Mat. Nauk 10 (1955), 147-152. (In Russian.) MR 0071596 | Zbl 0064.33901
[27] J. Kurzweil: Generalized ordinary differential equations and continuous dependence on a parameter. Czech. Math. J. 7 (1957), 418-449. DOI 10.21136/CMJ.1957.100258 | MR 0111875 | Zbl 0090.30002
[28] J. Kurzweil: On integration by parts. Czech. Math. J. 8 (1958), 356-359. DOI 10.21136/CMJ.1958.100310 | MR 0111877 | Zbl 0094.03505
[29] J. Kurzweil: On Fubini theorem for general Perron integral. Czech. Math. J. 23 (1973), 286-297. DOI 10.21136/CMJ.1973.101167 | MR 0333086 | Zbl 0267.26006
[30] J. Kurzweil: On multiplication of Perron-integrable functions. Czech. Math. J. 23 (1973), 542-566. DOI 10.21136/CMJ.1973.101199 | MR 0335705 | Zbl 0269.26007
[31] J. Kurzweil: The Perron-Ward integral and related concepts: Appendix A. Measure and Integral: Probability and Mathematical Statistics Academic Press, New York (1978), 515-533. MR 0514702 | Zbl 0446.28001
[32] J. Kurzweil: Nichtabsolut konvergente Integrale. Teubner-Texte zur Mathematik 26. B. G. Teubner, Leipzig (1980). (In German.) MR 0597703 | Zbl 0441.28001
[33] J. Kurzweil: The integral as a limit of integral sums. Jahrb. Überblicke Math. 1984, Math. Surv. 17 (1984), 105-136. Zbl 0554.26007
[34] J. Kurzweil: Henstock-Kurzweil Integration: Its Relation to Topological Vector Spaces. Series in Real Analysis 7. World Scientific, Singapore (2000). DOI 10.1142/4333 | MR 1763305 | Zbl 0954.28001
[35] J. Kurzweil: Integration Between the Lebesgue Integral and the Henstock-Kurzweil Integral: Its Relation to Local Convex Vector Spaces. Series in Real Analysis 8. World Scientific, Singapore (2002). DOI 10.1142/5005 | MR 1908744 | Zbl 1018.26005
[36] J. Kurzweil: Generalized Ordinary Differential Equations: Not Absolutely Continuous Solutions. Series in Real Analysis 11. World Scientific, Hackensack (2012). DOI 10.1142/7907 | MR 2906899 | Zbl 1248.34001
[37] J. Kurzweil, J. Jarník: Equiintegrability and controlled convergence of Perron-type integrable functions. Real Anal. Exch. 17 (1991/92), 110-139. DOI 10.2307/44152200 | MR 1147361 | Zbl 0754.26003
[38] J. Kurzweil, J. Jarník: Differentiability and integrability in $n$ dimensions with respect to $\alpha$-regular intervals. Result. Math. 21 (1992), 138-151. DOI 10.1007/BF03323075 | MR 1146639 | Zbl 0764.28005
[39] J. Kurzweil, J. Jarník: Equivalent definitions of regular generalized Perron integral. Czech. Math. J. 42 (1992), 365-378. DOI 10.21136/CMJ.1992.128325 | MR 1179506 | Zbl 0782.26004
[40] J. Kurzweil, J. Jarník: Generalized multidimensional Perron integral involving a new regularity condition. Result. Math. 23 (1993), 363-373. DOI 10.1007/BF03322308 | MR 1215221 | Zbl 0782.26003
[41] J. Kurzweil, J. Jarník: Perron type integration on $n$-dimensional intervals as an extension of integration of stepfunctions by strong equiconvergence. Czech. Math. J. 46 (1996), 1-20. DOI 10.21136/CMJ.1996.127265 | MR 1371683 | Zbl 0902.26007
[42] J. Kurzweil, J. Jarník: A convergence theorem for Henstock-Kurzweil integral and its relation to topology. Bull. Cl. Sci., VI. Sér., Acad. R. Belg. 8 (1997), 217-230. MR 1709540 | Zbl 1194.26013
[43] J. Kurzweil, J. Jarník: Henstock-Kurzweil integration: Convergence cannot be replaced by a locally convex topology. Bull. Cl. Sci., VI. Sér., Acad. R. Belg. 9 (1998), 331-347. MR 1728847 | Zbl 1194.26012
[44] J. Kurzweil, J. Mawhin, W. F. Pfeffer: An integral defined by approximating $BV$ partitions of unity. Czech. Math. J. 41 (1991), 695-712. DOI 10.21136/CMJ.1991.102500 | MR 1134958 | Zbl 0763.26007
[45] H. Lebesgue: Intégrale, longueur, aire. Annali di Mat. (3) 7 (1902), 231-359. (In French.) DOI 10.1007/BF02420592 | JFM 33.0307.02
[46] J. Mawhin: Generalized multiple Perron integrals and the Green-Goursat theorem for differentiable vector fields. Czech. Math. J. 31 (1981), 614-632. DOI 10.21136/CMJ.1981.101777 | MR 0631606 | Zbl 0562.26004
[47] J. Mawhin: Generalized Riemann integrals and the divergence theorem for differentiable vector fields. E. B. Christoffel: The Influence of His Work on Mathematics and the Physical Sciences Birkhäuser, Basel (1981), 704-714. DOI 10.1007/978-3-0348-5452-8_55 | MR 0661109 | Zbl 0562.26003
[48] J. Mawhin: Integration and the fundamental theory of ordinary differential equations: A historical sketch. Constantin Carathéodory: An International Tribute. Volume II World Scientific, Singapore (1991), 828-849. DOI 10.1142/9789814350921_0043 | MR 1130868 | Zbl 0744.34003
[49] E. J. McShane: A Riemann-type integral that includes Lebesgue-Stieltjes, Bochner and stochastic integrals. Memoirs of the American Mathematical Society 88. AMS, Providence (1969). DOI 10.1090/memo/0088 | MR 0265527 | Zbl 0188.35702
[50] G. A. Monteiro, A. Slavík, M. Tvrdý: Kurzweil-Stieltjes Integral: Theory and Applications. Series in Real Analysis 15. World Scientific, Hackensack (2019). DOI 10.1142/9432 | MR 3839599 | Zbl 1437.28001
[51] L. Moonens: Intégration, de Riemann à Kurzweil et Henstock: La construction progressive des théories "modernes" de l'intégrale. Références Sciences. Ellipses, Paris (2017). (In French.) Zbl 1397.26002
[52] D. J. F. Nonnenmacher: Every $ M_1$-integrable function is Pfeffer integrable. Czech. Math. J. 43 (1993), 327-330. DOI 10.21136/CMJ.1993.128400 | MR 1211754 | Zbl 0789.26006
[53] O. Perron: Über den Integralbegriff. Heidelb. Ak. Sitzungsber. 14 (1914), 16 pages. (In German.) JFM 45.0445.01
[54] W. F. Pfeffer: The divergence theorem. Trans. Am. Math. Soc. 295 (1986), 665-685. DOI 10.1090/S0002-9947-1986-0833702-0 | MR 0833702 | Zbl 0596.26007
[55] W. F. Pfeffer: The Riemann Approach to Integration: Local Geometric Theory. Cambridge Tracts in Mathematics 109. Cambridge University Press, Cambridge (1993). MR 1268404 | Zbl 0804.26005
[56] B. Riemann: Ueber die Darstellbarkeit einer Funktion durch eine trigonometrische Reihe. Abh. Kön. Ges. Wiss. Göttingen 14 (1868), 1-16. (In German.) JFM 01.0131.03
[57] Š. Schwabik: Generalized Ordinary Differential Equations. Series in Real Analysis 5. World Scientific, Singapore (1992). DOI 10.1142/1875 | MR 1200241 | Zbl 0781.34003
[58] V. Volterra: Sui principii del calcolo integrale. Battaglini G. 19 (1881), 333-372. (In Italian.) JFM 13.0213.02
[59] A. J. Ward: The Perron-Stieltjes integral. Math. Z. 41 (1936), 578-604. DOI 10.1007/BF01180442 | MR 1545641 | Zbl 0014.39702

Affiliations:   Jean Mawhin, Research Institute in Mathematics and Physics, Catholic University of Louvain, Chemin du Cyclotron, 2, 1348 Louvain-la-Neuve, Belgium, e-mail: jean.mawhin@uclouvain.be


 
PDF available at: