Czechoslovak Mathematical Journal, Vol. 73, No. 2, pp. 613-620, 2023


On the divisor function over Piatetski-Shapiro sequences

Hui Wang, Yu Zhang

Received May 15, 2022.   Published online March 6, 2023.

Abstract:  Let $[x]$ be an integer part of $x$ and $d(n)$ be the number of positive divisor of $n$. Inspired by some results of M. Jutila (1987), we prove that for $1<c<\frac65$, $\sum_{n\leq x} d([n^c])= cx\log x +(2\gamma-c)x+O (\frac{x}{\log x}),$ where $\gamma$ is the Euler constant and $[n^c]$ is the Piatetski-Shapiro sequence. This gives an improvement upon the classical result of this problem.
Keywords:  divisor function; Piatetski-Shapiro sequence; exponential sum
Classification MSC:  11B83, 11L07, 11N25, 11N37


References:
[1] G. I. Arkhipov, V. N. Chubarikov: On the distribution of prime numbers in a sequence of the form $[n^c]$. Mosc. Univ. Math. Bull. 54 (1999), 25-35; translation from Vestn. Mosk. Univ., Ser. I 1999 (1999), 25-35. MR 1735145 | Zbl 0983.11055
[2] G. I. Arkhipov, K. M. Soliba, V. N. Chubarikov: On the sum of values of a multidimensional divisor function on a sequence of type $[n^c]$. Mosc. Univ. Math. Bull. 54 (1999), 28-36; translation from Vestn. Mosk. Univ., Ser. I 1999 (1999), 28-35. MR 1706007 | Zbl 0957.11040
[3] S. W. Graham, G. Kolesnik: Van der Corput's Method of Exponential Sums. London Mathematical Society Lecture Note Series 126. Cambridge University Press, Cambridge (1991). DOI 10.1017/CBO9780511661976 | MR 1145488 | Zbl 0713.11001
[4] D. R. Heath-Brown: The Pjateckii-Šapiro prime number theorem. J. Number Theory 16 (1983), 242-266. DOI 10.1016/0022-314X(83)90044-6 | MR 0698168 | Zbl 0513.10042
[5] M. Jutila: Lectures on a Method in the Theory of Exponential Sums. Tata Institute Lectures on Mathematics and Physics 80. Springer, Berlin (1987). MR 0910497 | Zbl 0671.10031
[6] G. A. Kolesnik: An improvement of the remainder term in the divisor problem. Math. Notes 6 (1969), 784-791; translation from Mat. Zametki 6 (1969), 545-554. DOI 10.1007/BF01101405 | MR 0257004 | Zbl 0233.10031
[7] G. A. Kolesnik: Primes of the form $[n^c]$. Pac. J. Math. 118 (1985), 437-447. DOI 10.2140/PJM.1985.118.437 | MR 0789183 | Zbl 0571.10037
[8] H. Q. Liu, J. Rivat: On the Pjateckii-Šapiro prime number theorem. Bull. Lond. Math. Soc. 24 (1992), 143-147. DOI 10.1112/BLMS/24.2.143 | MR 1148674 | Zbl 0772.11032
[9] G. S. Lü, W. G. Zhai: The sum of multidimensional divisor functions on a special sequence. Adv. Math., Beijing 32 (2003), 660-664. (In Chinese.) MR 2058014 | Zbl 1481.11090
[10] I. I. Piatetski-Shapiro: On the distribution of the prime numbers in sequences of the form $[f(n)]$. Mat. Sb., N. Ser. 33 (1953), 559-566. (In Russian.) MR 0059302 | Zbl 0053.02702
[11] J. Rivat, P. Sargos: Nombres premiers de la forme $[n^c]$. Can. J. Math. 53 (2001), 414-433. (In French.) DOI 10.4153/CJM-2001-017-0 | MR 1820915 | Zbl 0970.11035
[12] J. Rivat, J. Wu: Prime numbers of the form $[n^c]$. Glasg. Math. J. 43 (2001), 237-254. DOI 10.1017/S0017089501020080 | MR 1838628 | Zbl 0987.11052
[13] J. D. Vaaler: Some extremal functions in Fourier analysis. Bull. Am. Math. Soc., New Ser. 12 (1985), 183-216. DOI 10.1090/S0273-0979-1985-15349-2 | MR 0776471 | Zbl 0575.42003

Affiliations:   Hui Wang (corresponding author), Yu Zhang, School of Mathematics of Shandong University, 27 Shanda Nanlu, Jinan 250100, Shandong, P. R. China, e-mail: wh0315@mail.sdu.edu.cn, yuzhang0615@mail.sdu.edu.cn


 
PDF available at: