Czechoslovak Mathematical Journal, first online, pp. 1-16
A necessary condition for HK-integrability of the Fourier sine transform function
Juan H. Arredondo, Manuel Bernal, Maria G. Morales
Received June 22, 2022. Published online March 22, 2023.
Abstract: The paper is concerned with integrability of the Fourier sine transform function when $f\in{\rm BV}_0(\mathbb{R} )$, where ${\rm BV}_0(\mathbb{R} )$ is the space of bounded variation functions vanishing at infinity. It is shown that for the Fourier sine transform function of $f$ to be integrable in the Henstock-Kurzweil sense, it is necessary that $f /x \in L^1(\mathbb{R})$. We prove that this condition is optimal through the theoretical scope of the Henstock-Kurzweil integration theory.
Keywords: Fourier transform; Henstock-Kurzweil integral; bounded variation function
References: [1] J. H. Arredondo, M. Bernal, M. G. Morales: Fourier analysis with generalized integration. Mathematics 8 (2020), Article ID 1199, 16 pages. DOI 10.3390/math8071199
[2] J. H. Arredondo, F. J. Mendoza, A. Reyes: On the norm continuity of the HK-Fourier transform. Electron. Res. Announc. Math. Sci. 25 (2018), 36-47. DOI 10.3934/era.2018.25.005 | MR 3810181 | Zbl 1401.26019
[3] J. H. Arredondo, A. Reyes: Interpolation theory for the HK-Fourier transform. Rev. Unión Mat. Argent. 62 (2021), 401-413. DOI 10.33044/revuma.1911 | MR 4363338 | Zbl 1487.42008
[4] R. G. Bartle: A Modern Theory of Integration. Graduate Studies in Mathematics 32. AMS, Providence (2001). DOI 10.1090/gsm/032 | MR 1817647 | Zbl 0968.26001
[5] R. J. Bell: Introductory Fourier Transform Spectroscopy. Academic Press, New York (1972). DOI 10.1016/B978-0-12-085150-8.X5001-3
[6] P. Bloomfield: Fourier Analysis of Time Series: An Introduction. Wiley Series in Probability and Statistics: Applied Probability and Statistics. John Wiley & Sons, Chichester (2000). DOI 10.1002/0471722235 | MR 1884963 | Zbl 0994.62093
[7] R. N. Bracewell: The Fourier Transform and Its Applications. McGraw-Hill, New York (2000). MR 0924577 | Zbl 0561.42001
[8] B. Chanda, D. Dutta Majumder: Digital Image Processing and Analysis. PHI Learning, New Delhi (2011).
[9] J. R. Ferraro, L. J. Basile: Fourier Transform Infrared Spectra: Applications to Chemical Systems. Vol. 1. Academic Press, New York (1978). DOI 10.1016/C2009-0-22072-1
[10] G. B. Folland: Real Analysis: Modern Techniques and Their Applications. Pure and Applied Mathematics. John Wiley & Sons, New York (1984). MR 0767633 | Zbl 0549.28001
[11] G. B. Folland: Fourier Analysis and Its Applications. Wadsworth & Brooks/Cole Advanced Books & Software, Pacific Grove (1992). MR 1145236 | Zbl 0786.42001
[12] R. A. Gordon: The Integrals of Lebesgue, Denjoy, Perron, and Henstock. Graduate Studies in Mathematics 4. AMS, Providence (1994). DOI 10.1090/gsm/004 | MR 1288751 | Zbl 0807.26004
[13] R. M. Gray, J. W. Goodman: Fourier Transforms: An Introduction for Engineers. The Kluwer International Series in Engineering and Computer Science 322. Kluwer Academic, Dordrecht (1995). DOI 10.1007/978-1-4615-2359-8 | Zbl 0997.42500
[14] P.-Y. Lee: Lanzhou Lectures on Henstock Integration. Series in Real Analysis 2. World Scientific, London (1989). DOI 10.1142/0845 | MR 1050957 | Zbl 0699.26004
[15] E. Liflyand: Asymptotics of the Fourier sine transform of a function of bounded variation. Math. Notes 100 (2016), 93-99. DOI 10.1134/S0001434616070087 | MR 3588831 | Zbl 1362.42013
[16] E. Liflyand: Integrability spaces for the Fourier transform of a function of bounded variation. J. Math. Anal. Appl. 436 (2016), 1082-1101. DOI 10.1016/j.jmaa.2015.12.042 | MR 3446998 | Zbl 1341.42009
[17] E. Liflyand: The Fourier transform of a function of bounded variation: Symmetry and asymmetry. J. Fourier Anal. Appl. 24 (2018), 525-544. DOI 10.1007/s00041-017-9530-1 | MR 3776333 | Zbl 1440.42019
[18] E. Liflyand: Functions of Bounded Variation and Their Fourier Transforms. Applied and Numerical Harmonic Analysis. Birkhäuser, Cham (2019). DOI 10.1007/978-3-030-04429-9 | MR 3929690 | Zbl 1418.42001
[19] R. M. McLeod: The Generalized Riemann Integral. The Carus Mathematical Monographs 20. Mathematical Association of America, Washington (1980). DOI 10.5948/UPO9781614440208 | MR 0588510 | Zbl 0486.26005
[20] E. J. McShane: Integration. Princeton Mathematical Series 7. Princeton University Press, Princeton (1947). DOI 10.1515/9781400877812 | MR 0010606 | Zbl 0033.05302
[21] F. J. Mendoza Torres, M. G. Morales Marcías, J. A. Escamilla Reyna, J. H. Arredondo Ruiz: Several aspects around the Riemann-Lebesgue lemma. J. Adv. Res. Pure Math. 5 (2013), 33-46. DOI 10.5373/jarpm.1458.052712 | MR 3041342
[22] G. A. Monteiro, A. Slavík, M. Tvrdý: Kurzweil-Stieltjes Integral: Theory and Applications. Series in Real Analysis 15. World Scientific, Hackensack (2019). DOI 10.1142/9432 | MR 3839599 | Zbl 1437.28001
[23] M. G. Morales, J. H. Arredondo, F. J. Mendoza: An extension of some properties for the Fourier transform operator on $L^p(\Bbb R)$ spaces. Rev. Unión Mat. Argent. 57 (2016), 85-94. MR 3583297 | Zbl 1357.43001
[24] T. M. Peters, J. Williams (eds.): The Fourier Transform in Biomedical Engineering. Applied and Numerical Harmonic Analysis. Birkhäuser, Basel (1998). DOI 10.1007/978-1-4612-0637-8 | MR 1634301 | Zbl 0910.92022
[25] M. A. Pinsky: Introduction to Fourier Analysis and Wavelets. Brooks/Cole Series in Advanced Mathematics. Brooks/Cole, Pacific Grove (2002). DOI 10.1090/gsm/102 | MR 2100936 | Zbl 1065.42001
[26] W. Rudin: Real and Complex Analysis. McGraw-Hill, New York (1987). MR 0924157 | Zbl 0925.00005
[27] M. Ruzhansky, S. Tikhonov: Some problems in Fourier analysis and approximation theory. Methods of Fourier Analysis and Approximation Theory Applied and Numerical Harmonic Analysis. Birkhäuser, Basel 2016 1-19. DOI 10.1007/978-3-319-27466-9_1 | MR 3497695 | Zbl 1343.42001
[28] S. Sánchez-Perales, F. J. Mendoza Torres, J. A. Escamilla Reyna: Henstock-Kurzweil integral transforms. Int. J. Math. Math. Sci. 2012 (2012), Article ID 209462, 11 pages. DOI 10.1155/2012/209462 | MR 2983789 | Zbl 1253.44006
[29] E. C. Titchmarsh: Introduction to the Theory of Fourier Integrals. Clarendon Press, Oxford (1937). MR 0942661 | Zbl 0017.40404
Affiliations: Juan H. Arredondo (corresponding author), Manuel Bernal, Department of Mathematics, Division of Basic Sciences and Engineering, Metropolitan Autonomous University, Av. San Rafael Atlixco 186, Del. Iztapalapa, C.P. 09310, Mexico City, Mexico, e-mail: iva@xanum.uam.mx, mbg@xanum.uam.mx; Maria G. Morales, Department of Mathematics and Statistics, Faculty of Science, Masaryk University. Kotlářská 2, 611 37 Brno, Czech Republic, e-mail: maciasm@math.muni.cz