Czechoslovak Mathematical Journal, first online, pp. 1-19


Convergence of ap-Henstock-Kurzweil integral on locally compact spaces

Hemanta Kalita, Ravi P. Agarwal, Bipan Hazarika

Received October 6, 2022.   Published online June 19, 2023.

Abstract:  We introduce an ap-Henstock-Kurzweil type integral with a non-atomic Radon measure and prove the Saks-Henstock type lemma. The monotone convergence theorem, $\mu_{\rm ap}$-Henstock-Kurzweil equi-integrability, and uniformly strong Lusin condition are discussed.
Keywords:  ap-Henstock-Kurzweil integral; uniformly strong Lusin condition; monotone convergence theorem; $\mu_{\rm ap}$-Henstock-Kurzweil equi-integrability; Henstock's lemma
Classification MSC:  26A39, 28A12

PDF available at:  Springer   Institute of Mathematics CAS

References:
[1] D. Bongiorno, G. Corrao: An integral on a complete metric measure space. Real Anal. Exch. 40 (2015), 157-178. DOI 10.14321/realanalexch.40.1.0157 | MR 3365396 | Zbl 1391.26027
[2] P. S. Bullen: The Burkill approximately continuous integral. J. Aust. Math. Soc., Ser. A 35 (1983), 236-253. DOI 10.1017/S1446788700025738 | MR 0704431 | Zbl 0533.26005
[3] J. C. Burkill: The approximately continuous Perron integral. Math. Z. 34 (1932), 270-278. DOI 10.1007/BF01180588 | MR 1545252 | Zbl 0002.38604
[4] S. S. Cao: The Henstock integral for Banach-valued functions. Southeast Asian Bull. Math. 16 (1992), 35-40. MR 1173605 | Zbl 0749.28007
[5] G. Corrao: An Henstock-Kurzweil Type Integral on a Measure Metric Space: Doctoral Thesis. Universita Degli Studi Di Palermo, Palermo (2013).
[6] L. Di Piazza, V. Marraffa, K. Musiał: Variational Henstock integrability of Banach space valued functions. Math. Bohem. 141 (2016), 287-296. DOI 10.21136/MB.2016.19 | MR 3499788 | Zbl 1413.26019
[7] R. E. Edwards: Functional Analysis: Theory and Applications. Holt Rinehart and Winston, New York (1965). MR 0221256 | Zbl 0182.16101
[8] R. A. Gordon: The Integrals of Lebesgue, Denjoy, Perron, and Henstock. Graduate Studies in Mathematics 4. AMS, Providence (1994). DOI 10.1090/gsm/004 | MR 1288751 | Zbl 0807.26004
[9] R. Henstock: Linear Analysis. Butterworths, London (1967). MR 0419707 | Zbl 0172.39001
[10] R. Henstock: Lectures on the Theory of Integration. Series in Real Analysis 1. World Scientific, Singapore (1988). DOI 10.1142/0510 | MR 0963249 | Zbl 0668.28001
[11] R. Henstock: The General Theory of Integration. Oxford Mathematical Monographs. Clarendon Press, Oxford (1991). MR 1134656 | Zbl 0745.26006
[12] H. Kalita, B. Hazarika: A convergence theorem for $ap$-Henstock-Kurzweil integral and its relation to topology. Filomat 36 (2022), 6831-6839. MR 4563043
[13] P.-Y. Lee: Lanzhou Lectures on Henstock Integration. Series in Real Analysis 2. World Scientific, London (1989). DOI 10.1142/0845 | MR 1050957 | Zbl 0699.26004
[14] P. Y. Lee, R. Výborný: The Integral: An Easy Approach After Kurzweil and Henstock. Australian Mathematical Society Lecture Series 14. Cambridge University Press, Cambridge (2000). MR 1756319 | Zbl 0941.26003
[15] N. W. Leng: Nonabsolute Integration on Measure Spaces. Series in Real Analysis 14. World Scientific, Hackensack (2018). DOI 10.1142/10489 | MR 3752602 | Zbl 1392.28001
[16] P. Mattila: Geometry of Sets and Measures in Euclidean Spaces: Fractals and Rectifiability. Cambridge Studies in Advanced Mathematics 44. Cambridge University Press, Cambridge (1995). DOI 10.1017/CBO9780511623813 | MR 1333890 | Zbl 0819.28004
[17] E. Mema: Equiintegrability and controlled convergence for the Henstock-Kurzweil integral. Int. Math. Forum 8 (2013), 913-919. DOI 10.12988/imf.2013.13097 | MR 3069783 | Zbl 1285.28017
[18] J. M. Park, D. H. Lee, J. H. Yoon, B. M. Kim: The convergence theorems for ap-integral. J. Chung. Math. Soc. 12 (1999), 113-118.
[19] J. M. Park, J. J. Oh, C.-G. Park, D. H. Lee: The ap-Denjoy and ap-Henstock integrals. Czech. Math. J. 57 (2007), 689-696. DOI 10.1007/s10587-007-0106-0 | MR 2337623 | Zbl 1174.26308
[20] O. Perron: Über den Integralbegriff. Heidelb. Ak. Sitzungsber. 16 (1914), 1-16. (In German.) JFM 45.0445.01
[21] K. C. Shin, J. H. Yoon: Properties for AP-Henstock integral. Available at https://www.researchgate.net/publication/349409139_PROPERTIES_FOR_THE_AP_-HENSTOCK_INTEGRAL (2021).
[22] V. A. Skvortsov, T. Sworowska, P. Sworowski: On approximately continuous integrals (a survey). Traditional and Present-Day Topics in Real Analysis. Łodź University Press, Łodź (2013), 233-252. MR 3204590 | Zbl 1334.26012
[23] V. A. Skvortsov, P. Sworowski: The AP-Denjoy and AP-Henstock integrals revisited. Czech. Math. J. 62 (2012), 581-591. DOI 10.1007/s10587-012-0050-5 | MR 2984620 | Zbl 1265.26019
[24] B. Soedijono, P. Y. Lee, T. S. Chew: The Kubota Integral and Beyond. NUS Research Report 389. National University of Singapur, Singapur (1989).
[25] N. Wiener: Generalized harmonic analysis. Acta Math. 55 (1930), 117-258. DOI 10.1007/BF02546511 | MR 1555316 | JFM 56.0954.02

Affiliations:   Hemanta Kalita (corresponding author), Department of Mathematics, Assam Don Bosco University, Tapesia Gardens, Kamarkuchi, Sonapur, Assam 782402, India, e-mail: hemanta30kalita@gmail.com; Ravi P. Agarwal, Department of Mathematics, Texas A& M University-Kingsville, 700 University Blvd, Kingsville, TX 78363, USA, e-mail: Ravi.Agarwal@tamuk.edu; Bipan Hazarika, Department of Mathematics, Gauhati University, Guwahati, Assam 781014, India, e-mail: bh_rgu@yahoo.co.in


 
PDF available at: