Czechoslovak Mathematical Journal, first online, pp. 1-16
Integration and decompositions of weak$^*$-integrable multifunctions
Kazimierz Musiał
Received October 30, 2022. Published online May 10, 2023.
Abstract: Conditions guaranteeing Pettis integrability of a Gelfand integrable multifunction and a decomposition theorem for the Henstock-Kurzweil-Gelfand integrable multifunctions are presented.
References: [1] B. Bongiorno, L. Di Piazza, K. Musiał: A decomposition theorem for the fuzzy Henstock integral. Fuzzy Sets Syst. 200 (2012), 36-47. DOI 10.1016/j.fss.2011.12.006 | MR 2927843 | Zbl 1253.28010
[2] D. Candeloro, L. Di Piazza, K. Musiał, A. R. Sambucini: Gauge integrals and selections of weakly compact valued multifunctions. J. Math. Anal. Appl. 441 (2016), 293-308. DOI 10.1016/j.jmaa.2016.04.009 | MR 3488058 | Zbl 1339.28016
[3] D. Candeloro, L. Di Piazza, K. Musiał, A. R. Sambucini: Relations among gauge and Pettis integrals for $cwk(X)$-valued multifunctions. Ann. Mat. Pura Appl. (4) 197 (2018), 171-183. DOI 10.1007/s10231-017-0674-z | MR 3747527 | Zbl 1400.28020
[4] D. Candeloro, L. Di Piazza, K. Musiał, A. R. Sambucini: Some new results on integration for multifunction. Ric. Mat. 67 (2018), 361-372. DOI 10.1007/s11587-018-0376-x | MR 3864781 | Zbl 1402.28010
[5] D. Candeloro, L. Di Piazza, K. Musiał, A. R. Sambucini: Integration of multifunctions with closed convex values in arbitrary Banach spaces. J. Convex Anal. 27 (2020), 1233-1246. MR 4183407 | Zbl 1461.28007
[6] D. Candeloro, L. Di Piazza, K. Musiał, A. R. Sambucini: Multi-integrals of finite variation. Boll. Unione Mat. Ital. 13 (2020), 459-468. DOI 10.1007/s40574-020-00217-w | MR 4172946 | Zbl 1457.28010
[7] B. Cascales, V. Kadets, J. Rodríguez: The Gelfand integral for multi-valued functions. J. Convex Anal. 18 (2011), 873-895. MR 2858100 | Zbl 1252.46031
[8] L. Di Piazza, K. Musiał: Set-valued Kurzweil-Henstock-Pettis integral. Set-Valued Anal. 13 (2005), 167-179. DOI 10.1007/s11228-004-0934-0 | MR 2148134 | Zbl 1100.28008
[9] L. Di Piazza, K. Musiał: A decomposition theorem for compact-valued Henstock integral. Monatsh. Math. 148 (2006), 119-126. DOI 10.1007/s00605-005-0376-2 | MR 2235359 | Zbl 1152.28016
[10] L. Di Piazza, K. Musiał: Characterizations of Kurzweil-Henstock-Pettis integrable functions. Stud. Math. 176 (2006), 159-176. DOI 10.4064/sm176-2-4 | MR 2264361 | Zbl 1118.26008
[11] L. Di Piazza, K. Musiał: A decomposition of Henstock-Kurzweil-Pettis integrable multifunctions. Vector Measures, Integration and Related Topics Operator Theory: Advances and Applications 201. Birkhäuser, Basel (2010), 171-182. DOI 10.1007/978-3-0346-0211-2_16 | MR 2743985 | Zbl 1248.28019
[12] L. Di Piazza, K. Musiał: Henstock-Kurzweil-Pettis integrability of compact valued multifunctions with values in an arbitrary Banach space. J. Math. Anal. Appl. 408 (2013), 452-464. DOI 10.1016/j.jmaa.2013.05.073 | MR 3085043 | Zbl 1309.28012
[13] L. Di Piazza, K. Musiał: Relations among Henstock, McShane and Pettis integrals for multifunctions with compact convex values. Monatsh. Math. 173 (2014), 459-470. DOI 10.1007/s00605-013-0594-y | MR 3177941 | Zbl 1293.28006
[14] L. Di Piazza, K. Musiał: Decompositions of weakly compact valued integrable multifunctions. Mathematics 8 (2020), Article ID 863, 13 pages. DOI 10.3390/math8060863
[15] D. H. Fremlin, M. Talagrand: A decomposition theorem for additive set-functions, with applications to Pettis integrals and ergodic means. Math. Z. 168 (1979), 117-142. DOI 10.1007/BF01214191 | MR 0544700 | Zbl 0393.28005
[16] R. A. Gordon: The Denjoy extension of the Bochner, Pettis, and Dunford integrals. Stud. Math. 92 (1989), 73-91. DOI 10.4064/sm-92-1-73-91 | MR 0984851 | Zbl 0681.28006
[17] R. A. Gordon: The Integrals of Lebesgue, Denjoy, Perron, and Henstock. Graduate Studies in Mathematics 4. AMS, Providence (1994). DOI 10.1090/gsm/004 | MR 1288751 | Zbl 0807.26004
[18] S. Hu, N. S. Papageorgiou: Handbook of Multivalued Analysis. I. Theory. Mathematics and its Applications (Dordrecht) 419. Kluwer Academic, Dordrecht (1997). MR 1485775 | Zbl 0887.47001
[19] K. Kuratowski, C. Ryll-Nardzewski: A general theorem on selectors. Bull. Acad. Pol. Sci., Sér. Sci. Math. Astron. Phys. 13 (1965), 397-403. MR 0188994 | Zbl 0152.21403
[20] K. Musiał: The weak Radon-Nikodým property of Banach spaces. Stud. Math. 64 (1979), 151-173. DOI 10.4064/sm-64-2-151-174 | MR 0537118 | Zbl 0405.46015
[21] K. Musiał: Topics in the theory of Pettis integration. Rend. Ist. Mat. Univ. Trieste 23 (1991), 177-262. MR 1248654 | Zbl 0798.46042
[22] K. Musiał: Pettis integral. Handbook of Measure Theory. I. North-Holland, Amsterdam (2002), 531-586. DOI 10.1016/B978-044450263-6/50013-0 | MR 1954622 | Zbl 1043.28010
[23] K. Musiał: Pettis integrability of multifunctions with values in arbitrary Banach spaces. J. Convex Anal. 18 (2011), 769-810. MR 2858094 | Zbl 1245.28011
[24] K. Musiał: Approximation of Pettis integrable multifunctions with values in arbitrary Banach spaces. J. Convex Anal. 20 (2013), 833-870. MR 3136603 | Zbl 1284.28006
[25] K. Musiał: Gelfand integral of multifunctions. J. Convex Anal. 21 (2014), 1193-1200. MR 3331215 | Zbl 1320.28021
[26] K. Musiał: A decomposition theorem for Banach space valued fuzzy Henstock integral. Fuzzy Sets Syst. 259 (2015), 21-28. DOI 10.1016/j.fss.2014.03.012 | MR 3278742 | Zbl 1335.28005
[27] K. Musiał: Multimeasures with values in conjugate Banach spaces and the Weak Radon-Nikodým property. J. Convex Anal. 28 (2021), 879-902. MR 4374324 | Zbl 07470555
[28] J. Neveu: Bases mathématiques du calcul des probabilités. Masson et CIE, Paris (1964). (In French.) MR 0198504 | Zbl 0137.11203
[29] M. Talagrand: Pettis Integral and Measure Theory. Memoirs of the American Mathematical Society 307. AMS, Providence (1984). DOI 10.1090/memo/0307 | MR 0756174 | Zbl 0582.46049