Czechoslovak Mathematical Journal, first online, pp. 1-14


A note on average behaviour of the Fourier coefficients of $j$th symmetric power $L$-function over certain sparse sequence of positive integers

Youjun Wang

Received January 18, 2024.   Published online April 29, 2024.

Abstract:  Let $j\geq2$ be a given integer. Let $H_k^*$ be the set of all normalized primitive holomorphic cusp forms of even integral weight $k\geq2$ for the full modulo group ${\rm SL}(2,\mathbb{Z})$. For $f\in H_k^*$, denote by $\lambda_{{\rm sym}^jf}(n)$ the $n$th normalized Fourier coefficient of $j$th symmetric power $L$-function ($L(s, {\rm sym}^jf)$) attached to $f$. We are interested in the average behaviour of the sum $\sum_{n=a_1^2+a_2^2+a_3^2+a_4^2+a_5^2+a_6^2\leq x \atop(a_1,a_2,a_3,a_4,a_5,a_6)\in\mathbb{Z}^{ 6}} \lambda_{{\rm sym}^jf}^2(n)$, where $x$ is sufficiently large, which improves the recent work of A. Sharma and A. Sankaranarayanan (2023).
Keywords:  cusp form; Fourier coefficient; symmetric power $L$-function
Classification MSC:  11F11, 11F30, 11F66

PDF available at:  Institute of Mathematics CAS

References:
[1] J. Bourgain: Decoupling, exponential sums and the Riemann zeta function. J. Am. Math. Soc. 30 (2017), 205-224. DOI 10.1090/jams/860 | MR 3556291 | Zbl 1352.11065
[2] P. Deligne: La conjecture de Weil. I. Usp. Mat. Nauk 30 (1975), 159-190. (In Russian.) MR 0387282 | Zbl 0314.14007
[3] O. M. Fomenko: Identities involving the coefficients of automorphic $L$-functions. Zap. Nauchn. Semin. POMI 314 (2004), 247-256. (In Russian.) DOI 10.1007/s10958-006-0086-x | MR 2119744 | Zbl 1094.11018
[4] O. M. Fomenko: Mean value theorems for automorphic $L$-functions. Algebra Anal. 19 (2007), 246-264. (In Russian.) DOI 10.1090/S1061-0022-08-01024-8 | MR 2381948 | Zbl 1206.11061
[5] A. Good: The square mean of Dirichlet series associated with cusp forms. Mathematika 29 (1982), 278-295. DOI 10.1112/S0025579300012377 | MR 0696884 | Zbl 0497.10016
[6] G. Hua: The average behaviour of Hecke eigenvalues over certain sparse sequence of positive integers. Res. Number Theory 8 (2022), Article ID 95, 20 pages. DOI 10.1007/s40993-022-00403-z | MR 4500287 | Zbl 1497.11101
[7] J. Huang, H. Liu, D. Zhang: Power moments of automorphic $L$-functions related to Maass forms for SL$_3(\Bbb{Z})$. Open Math. 19 (2021), 1007-1017. DOI 10.1515/math-2021-0076 | MR 4306782 | Zbl 1483.11099
[8] A. Ivić: The Riemann Zeta-Function: The Theory of the Riemann Zeta-Function with Applications. John Wiley & Sons, New York (1985). MR 792089 | Zbl 0556.10026
[9] Y. Jiang, G. Lü: On the higher mean over arithmetic progressions of Fourier coefficients of cusp forms. Acta Arith. 166 (2014), 231-252. DOI 10.4064/aa166-3-2 | MR 3283621 | Zbl 1323.11023
[10] Y.-K. Lau, G. Lü: Sums of Fourier coefficients of cusp forms. Q. J. Math. 62 (2011), 687-716. DOI 10.1093/qmath/haq012 | MR 2825478 | Zbl 1269.11044
[11] Y. Lin, R. Nunes, Z. Qi: Strong subconvexity for self-dual GL3 $L$-functions. Int. Math. Res. Not. 2023 (2023), 11453-11470. DOI 10.1093/imrn/rnac153 | MR 4609788 | Zbl 07711446
[12] J. Liu, Y. Ye: Perron's formula and the prime number theorem for automorphic $L$-functions. Pure Appl. Math. Q. 3 (2007), 481-497. DOI 10.4310/PAMQ.2007.v3.n2.a4 | MR 2340051 | Zbl 1246.11152
[13] A. Sharma, A. Sankaranarayanan: Discrete mean square of the coefficients of symmetric square $L$-functions on certain sequence of positive numbers. Res. Number Theory 8 (2022), Article ID 19, 13 pages. DOI 10.1007/s40993-022-00319-8 | MR 4392068 | Zbl 1498.11177
[14] A. Sharma, A. Sankaranarayanan: On the average behavior of the Fourier coefficients of $j$th symmetric power $L$-function over certain sequences of positive integers. Czech. Math. J. 73 (2023), 885-901. DOI 10.21136/CMJ.2023.0348-22 | MR 4632863 | Zbl 07729543
[15] H. Tang: Estimates for the Fourier coefficients of symmetric square $L$-functions. Arch. Math. 100 (2013), 123-130. DOI 10.1007/s00013-013-0481-8 | MR 3020126 | Zbl 1287.11061
[16] H. Tang, J. Wu: Fourier coefficients of symmetric power $L$-functions. J. Number Theory 167 (2016), 147-160. DOI 10.1016/j.jnt.2016.03.005 | MR 3504040 | Zbl 1417.11050
[17] S. Zhai: Average behavior of Fourier coefficients of cusp forms over sum of two squares. J. Number Theory 133 (2013), 3862-3876. DOI 10.1016/j.jnt.2013.05.013 | MR 3084303 | Zbl 1295.11041

Affiliations:   Youjun Wang, School of Mathematics and Statistics, Henan University, 1 Jinming Road, Kaifeng 475004, P. R. China, e-mail: math_wyj@henu.edu.cn


 
PDF available at: