Czechoslovak Mathematical Journal, Vol. 74, No. 4, pp. 1113-1125, 2024


Unified-like product of monoids and its regularity property

Esra Kirmizi Çetinalp

Received February 29, 2024.   Published online October 15, 2024.

Abstract:  We first define a new monoid construction (called unified-like product $O {\Diamond_{\Omega}J$) under a unified product $O\bowtie J$ and the Schützenberger product $O \Diamond J$. We investigate whether this algebraic construction defined with operations of the unified and Schützenberger product specifies a monoid or not. Then, we obtain a presentation of this new product for any two monoids. Finally, we define the necessary and sufficient conditions for $O \Diamond_{\Omega}J$ to be regular.
Keywords:  unified product; Schützenberger product; regularity
Classification MSC:  16S15, 20D40, 20L05


References:
[1] A. L. Agore, A. Chirvăsitu, B. Ion, G. Militaru: Bicrossed products for finite groups. Algebr. Represent. Theory 12 (2009), 481-488. DOI 10.1007/s10468-009-9145-6 | MR 2501197 | Zbl 1187.20023
[2] A. L. Agore, D. Frăţilă: Crossed product of cyclic groups. Czech. Math. J. 60 (2010), 889-901. DOI 10.1007/s10587-010-0065-8 | MR 2738954 | Zbl 1208.20030
[3] A. L. Agore, G. Militaru: Crossed product of groups: Applications. Arab. J. Sci. Eng., Sect. C, Theme Issues 33 (2008), 1-17. MR 2500024 | Zbl 1186.20021
[4] A. L. Agore, G. Militaru: Unified products and split extensions of Hopf algebras. Hopf Algebras and Tensor Categories Contemporary Mathematics 585. AMS, Providence (2013), 1-15. DOI 10.1090/conm/585 | MR 3077233 | Zbl 1301.16038
[5] A. L. Agore, G. Militaru: Unified products for Leibniz algebras: Applications. Linear Algebra Appl. 439 (2013), 2609-2633. DOI 10.1016/j.laa.2013.07.021 | MR 3095673 | Zbl 1281.17003
[6] A. L. Agore, G. Militaru: Extending structures for Lie algebras. Monatsh. Math. 174 (2014), 169-193. DOI 10.1007/s00605-013-0537-7 | MR 3201255 | Zbl 1378.17033
[7] A. L. Agore, G. Militaru: Extending structures. I. The level of groups. Algebr. Represent. Theory 17 (2014), 831-848. DOI 10.1007/s10468-013-9420-4 | MR 3254771 | Zbl 1337.20029
[8] A. L. Agore, G. Militaru: Unified products for Jordan algebras: Applications. J. Pure Appl. Algebra 227 (2023), Article ID 107268, 19 pages. DOI 10.1016/j.jpaa.2022.107268 | MR 4512536 | Zbl 1510.17056
[9] F. Ateş: Some new monoid and group constructions under semi-direct products. Ars Comb. 91 (2009), 203-218. MR 2501961 | Zbl 1219.20036
[10] E. K. Çetinalp: Regularity of iterated crossed product of monoids. Bull. Int. Math. Virtual Inst. 12 (2022), 151-158. MR 4349201
[11] E. K. Çetinalp: Regularity of $n$-generalized Schützenberger product of monoids. J. Balikesir Univ. Inst. Sci. Technology 24 (2022), 71-78. DOI 10.25092/baunfbed.903026
[12] E. K. Çetinalp: $n$-generalized Schützenberger-crossed product of monoids. Ukr. J. Math. 76 (2024), 276-288. DOI 10.1007/s11253-024-02321-y | MR 4795137 | Zbl 7906290
[13] E. K. Çetinalp, E. G. Karpuz: Iterated crossed product of cyclic groups. Bull. Iran. Math. Soc. 44 (2018), 1493-1508. DOI 10.1007/s41980-018-0103-0 | MR 3878406 | Zbl 1407.16024
[14] A. Emin, F. Ateş, S. Ikikardeş, I. N. Cangül: A new monoid construction under crossed products. J. Inequal. Appl. 2013 (2013), Article ID 244, 6 pages. DOI 10.1186/1029-242X-2013-244 | MR 3068629 | Zbl 1286.20068
[15] J. M. Howie, N. Ruškuc: Constructions and presentations for monoids. Commun. Algebra 22 (1994), 6209-6224. DOI 10.1080/00927879408825184 | MR 1302999 | Zbl 0823.20061
[16] E. G. Karpuz, F. Ateş, S. Çevik: Regular and $\pi$-inverse monoids under Schützenberger products. Algebras Groups Geom. 27 (2010), 455-469. MR 2816635 | Zbl 1242.20068
[17] E. G. Karpuz, E. K. Çetinalp: Some remarks on the Schützenberger product of $n$ monoids. Ric. Mat 73 (2024), 2159-2171. DOI 10.1007/s11587-022-00743-z | MR 4780086 | Zbl 7909925
[18] W. R. Nico: On the regularity of semidirect products. J. Algebra 80 (1983), 29-36. DOI 10.1016/0021-8693(83)90015-7 | MR 0690701 | Zbl 0512.20043
[19] R. R. Redziejowski: Schützenberger-like products in non-free monoids. RAIRO, Inform. Théor. Appl. 29 (1995), 209-226. DOI 10.1051/ita/1995290302091 | MR 1347594 | Zbl 0833.68071
[20] M. A. Rudkovskij: Twisted product of Lie groups. Sib. Math. J. 38 (1997), 969-977. DOI 10.1007/BF02673042 | MR 1486020 | Zbl 0941.20030
[21] M. P. Schützenberger: On finite monoids having only trivial subgroups. Inf. Control 8 (1965), 190-194. DOI 10.1016/S0019-9958(65)90108-7 | MR 0176883 | Zbl 0131.02001
[22] H. Straubing: A generalization of the Schützenberger product of finite monoids. Theor. Comput. Sci. 13 (1981), 137-150. DOI 10.1016/0304-3975(81)90036-0 | MR 0594057 | Zbl 0456.20048

Affiliations:   Esra Kirmizi Çetinalp, Karamanoğlu Mehmetbey University, Kamil Özdağ Science Faculty, Department of Mathematics, Yunus Emre Campus, 70100, Karaman, Turkey, e-mail: esrakirmizi@kmu.edu.tr


 
PDF available at: