Czechoslovak Mathematical Journal, Vol. 74, No. 4, pp. 1165-1184, 2024
Local boundedness for minimizers of variational integrals under anisotropic nonstandard growth conditions
Zesheng Feng, Aiping Zhang, Hongya Gao
Received March 23, 2024. Published online October 20, 2024.
Abstract: This paper deals with local boundedness for minimizers of vectorial integrals under anisotropic growth conditions by using De Giorgi's iterative method. We consider integral functionals with the first part of the integrand satisfying anisotropic growth conditions including a convex nondecreasing function $g$, and with the second part, a convex lower order term or a polyconvex lower order term. Local boundedness of minimizers is derived.
Keywords: local boundedness; minimizer; variational integral; anisotropic growth; convex; polyconvex
References: [1] E. Acerbi, N. Fusco: Partial regularity under anisotropic $(p,q)$ growth conditions. J. Differ. Equations 107 (1994), 46-67. DOI 10.1006/jdeq.1994.1002 | MR 1260848 | Zbl 0807.49010
[2] G. Cupini, M. Focardi, F. Leonetti, E. Mascolo: On the Hölder continuity for a class of vectorial problems. Adv. Nonlinear Anal. 9 (2020), 1008-1025. DOI 10.1515/anona-2020-0039 | MR 3998218 | Zbl 1429.49042
[3] G. Cupini, F. Leonetti, E. Mascolo: Local boundedness for minimizers of some polyconvex integrals. Arch. Ration. Mech. Anal. 224 (2017), 269-289. DOI 10.1007/s00205-017-1074-7 | MR 3609252 | Zbl 1365.49035
[4] G. Cupini, P. Marcellini, E. Mascolo: Regularity under sharp anisotropic general growth conditions. Discrete Contin. Dyn. Syst., Ser. B 11 (2009), 67-86. DOI 10.3934/dcdsb.2009.11.67 | MR 2461809 | Zbl 1158.49040
[5] G. Cupini, P. Marcellini, E. Mascolo: Local boundedness of minimizers with limit growth conditions. J. Optim. Theory Appl. 166 (2015), 1-22. DOI 10.1007/s10957-015-0722-z | MR 3366102 | Zbl 1325.49043
[6] G. Cupini, P. Marcellini, E. Mascolo: Regularity of minimizers under limit growth conditions. Nonlinear Anal., Theory Methods Appl., Ser. A 153 (2017), 294-310. DOI 10.1016/j.na.2016.06.002 | MR 3614673 | Zbl 1358.49032
[7] N. Fusco, C. Sbordone: Local boundedness of minimizers in a limit case. Manuscr. Math. 69 (1990), 19-25. DOI 10.1007/BF02567909 | MR 1070292 | Zbl 0722.49012
[8] E. Giusti: Direct Methods in the Calculus of Variations. World Scientific, Singapore (2003). DOI 10.1142/5002 | MR 1962933 | Zbl 1028.49001
[9] T. Granucci, M. Randolfi: Regularity for local minima of a special class of vectorial problems with fully anisotropic growth. Manuscr. Math. 170 (2023), 677-772. DOI 10.1007/s00229-021-01360-0 | MR 4548604 | Zbl 1512.49038
[10] Y. Han, M. Fang, L. Xia, H. Gao: Two generalizations of Stampacchia lemma and applications. Available at https://arxiv.org/abs/2402.09455 (2024), 26 pages. DOI 10.48550/arXiv.2402.09455
[11] F. Leonetti, P. V. Petricca: Regularity for minimizers of integrals with nonstandard growth. Nonlinear Anal., Theory Methods Appl., Ser. A 129 (2015), 258-264. DOI 10.1016/j.na.2015.09.009 | MR 3414930 | Zbl 1327.49064
[12] P. Marcellini: Regularity of minimizers of integrals of the calculus of variations with non standard growth conditions. Arch. Ration. Mech. Anal. 105 (1989), 267-284. DOI 10.1007/BF00251503 | MR 0969900 | Zbl 0667.49032
[13] P. Marcellini: Regularity and existence of solutions of elliptic equations with $p,q$-growth conditions. J. Differ. Equations 90 (1991), 1-30. DOI 10.1016/0022-0396(91)90158-6 | MR 1094446 | Zbl 0724.35043
[14] M. Troisi: Teoremi di inclusione per spazi di Sobolev non isotropi. Ric. Mat. 18 (1969), 3-24. (In Italian.) MR 0415302 | Zbl 0182.16802
Affiliations: Zesheng Feng, Aiping Zhang, Hongya Gao (corresponding author), College of Mathematics and Information Science, Hebei University, No. 180 Wusi Dong Road, Lian Chi District, Baoding, 071002, P. R. China. e-mail: fengzesheng0227@qq.com, zhangaiping015@163.com, ghy@hbu.cn