Czechoslovak Mathematical Journal, Vol. 74, No. 2, pp. 389-395, 2024


Maximal non-pseudovaluation subrings of an integral domain

Rahul Kumar

Received March 21, 2023.   Published online June 5, 2024.

Abstract:  The notion of maximal non-pseudovaluation subring of an integral domain is introduced and studied. Let $R\subset S$ be an extension of domains. Then $R$ is called a maximal non-pseudovaluation subring of $S$ if $R$ is not a pseudovaluation subring of $S$, and for any ring $T$ such that $R \subset T\subset S$, $T$ is a pseudovaluation subring of $S$. We show that if $S$ is not local, then there no such $T$ exists between $R$ and $S$. We also characterize maximal non-pseudovaluation subrings of a local integral domain.
Keywords:  maximal non-pseudovaluation domain; pseudovaluation subring
Classification MSC:  13B02, 13G05, 3F30, 13B22


References:
[1] A. Ayache, O. Echi: Valuation and pseudovaluation subrings of an integral domain. Commun. Algebra 34 (2006), 2467-2483. DOI 10.1080/00927870600650515 | MR 2240386 | Zbl 1105.13028
[2] A. Ayache, A. Jaballah: Residually algebraic pairs of rings. Math. Z. 225 (1997), 49-65. DOI 10.1007/PL00004598 | MR 1451331 | Zbl 0868.13007
[3] P.-J. Cahen: Couple d'anneaux partageant un idéal. Arch. Math. 51 (1988), 505-514. (In French.) DOI 10.1007/BF01261971 | MR 0973725 | Zbl 0668.13005
[4] E. D. Davis: Overrings of commutative rings. III. Normal pairs. Trans. Am. Math. Soc. 182 (1973), 175-185. DOI 10.1090/S0002-9947-1973-0325599-3 | MR 0325599 | Zbl 0272.13004
[5] L. I. Dechene: Adjacent Extensions of Rings: Ph.D. Dissertation. University of California, Riverside (1978). MR 2627830
[6] D. E. Dobbs, M. Fontana: Universally incomparable ring homomorphisms. Bull. Aust. Math. Soc. 29 (1984), 289-302. DOI 10.1017/S0004972700021547 | MR 0748722 | Zbl 0535.13006
[7] D. Ferrand, J.-P. Olivier: Homomorphismes minimaux d'anneaux. J. Algebra 16 (1970), 461-471. (In French.) DOI 10.1016/0021-8693(70)90020-7 | MR 271079 | Zbl 0218.13011
[8] J. R. Hedstrom, E. G. Houston: Pseudo-valuation domains. Pac. J. Math. 75 (1978), 137-147. DOI 10.2140/pjm.1978.75.137 | MR 0485811 | Zbl 0368.13002
[9] N. Jarboui, S. Trabelsi: Some results about proper overrings of pseudo-valuation domains. J. Algebra Appl. 15 (2016), Article ID 1650099, 16 pages. DOI 10.1142/S0219498816500997 | MR 3479458 | Zbl 1343.13002
[10] R. Kumar, A. Gaur: Maximal non valuation domains in an integral domain. Czech. Math. J. 70 (2020), 1019-1032. DOI 10.21136/CMJ.2020.0098-19 | MR 4181793 | Zbl 1524.13034
[11] M. L. Modica: Maximal Subrings: Ph.D. Dissertation. University of Chicago, Chicago (1975). MR 2611729

Affiliations:   Rahul Kumar, Department of Mathematics, Birla Institute of Technology and Science Pilani, Pilani 333031, Rajasthan, India, e-mail: rahulkmr977@gmail.com


 
PDF available at: