Czechoslovak Mathematical Journal, Vol. 74, No. 4, pp. 1221-1240, 2024
The relationship between $K_u^2\cap vH^2$ and inner functions
Xiaoyuan Yang
Received May 6, 2024. Published online November 7, 2024.
Abstract: Let $u$ be an inner function and $K_u^2$ be the corresponding model space. For an inner function $v$, the subspace $vH^2$ is an invariant subspace of the unilateral shift operator on $H^2$. In this article, using the structure of a Toeplitz kernel ${\rm ker} T_{\overline{u}v}$, we study the intersection $K_u^2\cap vH^2$ by properties of inner functions $u$ and $v$ $(v\neq u)$. If $K_u^2\cap vH^2\neq\{0\}$, then there exists a triple $(B,b,g)$ such that $\overline{u}v=\frac{\lambda b \overline{BO_g}}g,$ where the triple $(B,b,g)$ means that $B$ and $b$ are Blaschke products, $g$ is an invertible function in $H^\infty$, $O_g$ denotes the outer factor of $g$, and $\lambda$ is some constant with $|\lambda|=1.$ Furthermore, for any nonconstant inner function $u$, there exists a Blaschke product $B$ such that $K_B^2\cap uH^2\neq\{0\}.$ In particular, we discuss the finite-dimensional intersection $K_u^2 \cap vH^2$. Moreover, we investigate connections between minimal Toeplitz kernels and $K_u^2\cap vH^2$.
Keywords: model space; invariant subspace of the unilateral shift operator; Toeplitz kernel; inner function
References: [1] S. Axler, S. A. Chang, D. Sarason: Products of Toeplitz operators. Integral Equations Oper. Theory 1 (1978), 285-309. DOI 10.1007/BF01682841 | MR 0511973 | Zbl 0396.47017
[2] C. Benhida, E. Fricain, D. Timotin: Reducing subspaces of $C_{00}$ contractions. New York J. Math. 27 (2021), 1597-1612. MR 4359207 | Zbl 07474337
[3] A. Beurling: On two problems concerning linear transformations in Hilbert space. Acta Math., Uppsala 81 (1949), 239-255. DOI 10.1007/BF02395019 | MR 0027954 | Zbl 0033.37701
[4] M. C. Câmara, J. R. Partington: Multipliers and equivalences between Toeplitz kernels. J. Math. Anal. Appl. 465 (2018), 557-570. DOI 10.1016/j.jmaa.2018.05.023 | MR 3806717 | Zbl 1391.42010
[5] M. C. Câmara, J. R. Partington: Toeplitz kernels and model spaces. The Diversity and Beauty of Applied Operator Theory. Operator Theory: Advances and Applications 268. Springer, Cham (2018), 139-153. DOI 10.1007/978-3-319-75996-8_7 | MR 3793302
[6] R. G. Douglas: Banach Algebra Techniques in the Theory of Toeplitz Operators. Regional Conference Series in Mathematics 15. AMS, Providence (1973). DOI 10.1090/cbms/015 | MR 0361894 | Zbl 0252.47025
[7] E. Fricain, A. Hartmann, W. T. Ross: Multipliers between model spaces. Stud. Math. 240 (2018), 177-191. DOI 10.4064/sm8782-4-2017 | MR 3720929 | Zbl 1394.30043
[8] S. R. Garcia, W. T. Ross: Model spaces: A survey. Invariant Subspaces of the Shift Operator. Contemporary Mathematics 638. AMS, Providence (2015), 197-245. DOI 10.1090/conm/638 | MR 3309355 | Zbl 1353.47016
[9] J. B. Garnett: Bounded Analytic Functions. Graduate Texts in Mathematics 236. Springer, New York (2007). DOI 10.1007/0-387-49763-3 | MR 2261424 | Zbl 1106.30001
[10] A. Hartmann, M. Mitkovski: Kernels of Toeplitz operators. Recent Progress on Operator Theory and Approximation in Spaces of Analytic Functions. Contemporary Mathematics 679. AMS, Providence (2016), 147-177. DOI 10.1090/conm/679 | MR 3589674 | Zbl 1375.30084
[11] E. Hayashi: The kernel of a Toeplitz operator. Integral Equations Oper. Theory 9 (1986), 588-591. DOI 10.1007/BF01204630 | MR 0853630 | Zbl 0636.47023
[12] R. A. Martínez-Avendaño, P. Rosenthal: An Introduction to Operators on the Hardy-Hilbert Space. Graduate Texts in Mathematics 237. Springer, New York (2007). DOI 10.1007/978-0-387-48578-2 | MR 2270722 | Zbl 1116.47001
[13] N. K. Nikolski: Operators, Functions, and Systems: An Easy Reading. Volume 1. Hardy, Hankel, and Toeplitz. Mathematical Surveys and Monographs 92. AMS, Providence (2002). DOI 10.1090/surv/092 | MR 1864396 | Zbl 1007.47001
[14] D. Sarason: Algebraic properties of truncated Toeplitz operators. Oper. Matrices 1 (2007), 491-526. DOI 10.7153/oam-01-29 | MR 2363975 | Zbl 1144.47026
[15] B. Sz.-Nagy, C. Foias, H. Bercovici, L. Kérchy: Harmonic Analysis of Operators on Hilbert Space. Universitext. Springer, New York (2010). DOI 10.1007/978-1-4419-6094-8 | MR 2760647 | Zbl 1234.47001
[16] X. Yang: The relationship between model spaces and the invariant subspaces of the unilateral shift operator. Contemp. Math. 5 (2024), 1474-1486. DOI 10.37256/cm.5220243835
[17] X. Yang, R. Li, Y. Lu: The kernel spaces and Fredholmness of truncated Toeplitz operators. Turk. J. Math. 45 (2021), 2180-2198. DOI 10.3906/mat-2102-109 | MR 4316916 | Zbl 07578944
[18] X. Yang, R. Li, Y. Yang, Y. Lu: Finite-rank and compact defect operators of truncated Toeplitz operators. J. Math. Anal. Appl. 510 (2022), Article ID 126032, 26 pages. DOI 10.1016/j.jmaa.2022.126032 | MR 4372793 | Zbl 07474373
[19] X. Yang, Y. Lu, Y. Yang: Compact commutators of truncated Toeplitz operators on the model space. Ann. Funct. Anal. 13 (2022), Article ID 49, 21 pages. DOI 10.1007/s43034-022-00196-3 | MR 4446266 | Zbl 07548894
Affiliations: Xiaoyuan Yang, School of Science, Jiangsu Ocean University, 59 Cangwu Rd, Haizhou, Lianyungang, Jiangsu, 222005, P. R. China, e-mail: Yangxyxy@163.com