Czechoslovak Mathematical Journal, Vol. 74, No. 4, pp. 983-1005, 2024


Dual modules and reflexive modules with respect to a semidualizing module

Lixin Mao

Received June 15, 2023.   Published online October 8, 2024.

Abstract:  Let $C$ be a semidualizing module over a commutative ring. We first investigate the properties of $C$-dual, $C$-torsionless and $C$-reflexive modules. Then we characterize some rings such as coherent rings, $\Pi$-coherent rings and FP-injectivity of $C$ using $C$-dual, $C$-torsionless and $C$-reflexive properties of some special modules.
Keywords:  semidualizing module; $C$-dual module; $C$-torsionless module; $C$-reflexive module
Classification MSC:  16D40, 16D50, 18G25


References:
[1] F. W. Anderson, K. R. Fuller: Rings and Categories of Modules. Graduate Texts in Mathematics 13. Springer, New York (1974). DOI 10.1007/978-1-4684-9913-1 | MR 0417223 | Zbl 0301.16001
[2] L. Angeleri-Hügel: Endocoherent modules. Pac. J. Math. 212 (2003), 1-11. DOI 10.2140/pjm.2003.212.1 | MR 2016564 | Zbl 1056.16001
[3] G. Azumaya: Finite splitness and finite projectivity. J. Algebra 106 (1987), 114-134. DOI 10.1016/0021-8693(87)90024-X | MR 0878471 | Zbl 0607.16017
[4] D. Bennis, R. El Maaouy, J. R. García Rozas, L. Oyonarte: On relative counterpart of Auslander's conditions. J. Algebra Appl. 22 (2023), Arrticle ID 2350015, 25 pages. DOI 10.1142/S0219498823500159 | MR 4526175 | Zbl 1507.18013
[5] V. Camillo: Coherence for polynomial rings. J. Algebra 132 (1990), 72-76. DOI 10.1016/0021-8693(90)90252-J | MR 1060832 | Zbl 0701.16023
[6] S. U. Chase: Direct products of modules. Trans. Am. Math. Soc. 97 (1960), 457-473. DOI 10.1090/S0002-9947-1960-0120260-3 | MR 0120260 | Zbl 0100.26602
[7] L. W. Christensen: Semi-dualizing complexes and their Auslander categories. Trans. Am. Math. Soc. 353 (2001), 1839-1883. DOI 10.1090/S0002-9947-01-02627-7 | MR 1813596 | Zbl 0969.13006
[8] R. R. Colby: Rings which have flat injective modules. J. Algebra 35 (1975), 239-252. DOI 10.1016/0021-8693(75)90049-6 | MR 0376763 | Zbl 0306.16015
[9] G. Dai, N. Ding: Coherent rings and absolutely pure precovers. Commun. Algebra 47 (2019), 4743-4748. DOI 10.1080/00927872.2019.1595637 | MR 3991048 | Zbl 1470.16008
[10] N. Ding: Dual modules of specific modules. J. Math. Res. Expo. 10 (1990), 337-340. (In Chinese.) MR 1072438 | Zbl 0788.16005
[11] N. Ding, J. Chen: Relative coherence and preenvelopes. Manuscr. Math. 81 (1993), 243-262. DOI 10.1007/BF02567857 | MR 1248754 | Zbl 0802.16023
[12] E. E. Enochs, O. M. G. Jenda: Resolvents and dimensions of modules and rings. Arch. Math. 56 (1991), 528-532. DOI 10.1007/BF01246767 | MR 1106493 | Zbl 0694.16012
[13] E. E. Enochs, O. M. G. Jenda: Relative Homological Algebra. de Gruyter Expositions in Mathematics 30. Walter de Gruyter, Berlin (2000). DOI 10.1515/9783110803662 | MR 1753146 | Zbl 0952.13001
[14] M. Finkel Jones: $f$-projectivity and flat epimorphisms. Commun. Algebra 9 (1981), 1603-1616. DOI 10.1080/00927878108822670 | MR 0630577 | Zbl 0472.16008
[15] M. Finkel Jones, M. L. Teply: Coherent rings of finite weak global dimension. Commun. Algebra 10 (1982), 493-503. DOI 10.1080/00927878208822731 | MR 0647834 | Zbl 0492.16019
[16] H.-B. Foxby: Gorenstein modules and related modules. Math. Scand. 31 (1972), 267-284. DOI 10.7146/math.scand.a-11434 | MR 0327752 | Zbl 0272.13009
[17] R. Göbel, J. Trlifaj: Approximations and Endomorphism Algebras of Modules. de Gruyter Expositions in Mathematics 41. Walter de Gruyter, Berlin (2006). DOI 10.1515/9783110199727 | MR 2251271 | Zbl 1121.16002
[18] E. S. Golod: $G$-dimension and generalized perfect ideals. Tr. Mat. Inst. Steklova 165 (1984), 62-66. (In Russian.) MR 0752933 | Zbl 0577.13008
[19] H. Holm, H. Jørgensen: Semi-dualizing modules and related Gorenstein homological dimensions. J. Pure Appl. Algebra 205 (2006), 423-445. DOI 10.1016/j.jpaa.2005.07.010 | MR 2203625 | Zbl 1094.13021
[20] H. Holm, D. White: Foxby equivalence over associative rings. J. Math. Kyoto Univ. 47 (2007), 781-808. DOI 10.1215/kjm/1250692289 | MR 2413065 | Zbl 1154.16007
[21] Z. Huang: On the $C$-flatness and injectivity of character modules. Electron. Res. Arch. 30 (2022), 2899-2910. DOI 10.3934/era.2022147 | MR 4432007 | Zbl 1511.16002
[22] Z. Huang, G. Tang: Self-orthogonal modules over coherent rings. J. Pure Appl. Algebra 161 (2001), 167-176. DOI 10.1016/S0022-4049(00)00109-2 | MR 1834083 | Zbl 0989.16005
[23] T. Y. Lam: Lectures on Modules and Rings. Graduate Texts in Mathematics 189. Springer, New York (1999). DOI 10.1007/978-1-4612-0525-8 | MR 1653294 | Zbl 0911.16001
[24] L. Mao: Envelopes, covers and semidualizing modules. J. Algebra Appl. 18 (2019), Article ID 1950137, 12 pages. DOI 10.1142/S0219498819501378 | MR 3977798 | Zbl 1472.16003
[25] L. Mao, N. Ding: Relative flatness, Mittag-Leffler modules, and endocoherence. Commun. Algebra 34 (2006), 3281-3299. DOI 10.1080/00927870600778555 | MR 2252672 | Zbl 1162.16002
[26] M. Salimi, E. Tavasoli, P. Moradifar, S. Yassemi: Syzygy and torsionless modules with respect to a semidualizing module. Algebr. Represent. Theory 17 (2014), 1217-1234. DOI 10.1007/s10468-013-9443-x | MR 3228484 | Zbl 1309.13016
[27] S. Sather-Wagstaff: Semidualizing modules. Available at https://www.ndsu.edu/pubweb/~ssatherw/DOCS/survey.pdf (2008), 34 pages.
[28] B. Stenström: Coherent rings and $FP$-injective modules. J. Lond. Math. Soc., II. Ser. 2 (1970), 323-329. DOI 10.1112/jlms/s2-2.2.323 | MR 0258888 | Zbl 0194.06602
[29] R. Takahashi, D. White: Homological aspects of semidualizing modules. Math. Scand. 106 (2010), 5-22. DOI 10.7146/math.scand.a-15121 | MR 2603458 | Zbl 1193.13012
[30] X. Tang: $FP$-injectivity relative to a semidualizing bimodule. Publ. Math. Debr. 80 (2012), 311-326. DOI 10.5486/PMD.2012.4907 | MR 2943005 | Zbl 1274.16005
[31] W. V. Vasconcelos: Divisor Theory in Module Categories. North-Holland Mathematics Studies 14. North-Holland, Amsterdam (1974). DOI 10.1016/s0304-0208(08)x7021-5 | MR 0498530 | Zbl 0296.13005
[32] X. G. Yan, X. S. Zhu: Characterizations of some rings with $\mathcal{C}$-projective, $\mathcal{C}$-($FP$-)injective and $\mathcal{C}$-flat modules. Czech. Math. J. 61 (2011), 641-652. DOI 10.1007/s10587-011-0036-8 | MR 2853080 | Zbl 1249.13004
[33] D. Zhang, B. Ouyang: Semidualizing modules and related modules. J. Algebra Appl. 10 (2011), 1261-1282. DOI 10.1142/S0219498811005695 | MR 2864574 | Zbl 1254.16003

Affiliations:   Lixin Mao, School of Mathematics and Physics, Nanjing Institute of Technology, No. 1 Hongjing Avenue, Jiangning District, Nanjing 211167, Jiangsu, P. R. China, e-mail: maolx2@hotmail.com


 
PDF available at: