Czechoslovak Mathematical Journal, first online, pp. 1-12


Elementary construction of Hölder functions such that the Kurzweil-Stieltjes integral does not exist

Martin Rmoutil

Received June 27, 2023.   Published online March 15, 2024.

Abstract:  For any $\alpha, \beta>0$ with $\alpha+\beta<1$ we provide a simple construction of an $\alpha$-Hölde function $f\colon[0,1]\to{\mathbb R}$ and a $\beta$-Hölder function $g\colon[0,1]\to{\mathbb R}$ such that the integral $\int_0^1 f  {\rm d} g$ fails to exist even in the Kurzweil-Stieltjes sense.
Keywords:  Kurzweil-Stieltjes integral; Hölder function; counterexample
Classification MSC:  26A39, 26A42, 26A16

PDF available at:  Springer   Institute of Mathematics CAS

References:
[1] R. M. Dudley, R. Norvaiša: Differentiability of Six Operators on Nonsmooth Functions and $p$-Variation. Lecture Notes in Mathematics 1703. Springer, Berlin (1999). DOI 10.1007/BFb0100744 | MR 1705318 | Zbl 0973.46033
[2] R. M. Dudley, R. Norvaiša: Concrete Functional Calculus. Springer Monographs in Mathematics. Springer, New York (2011). DOI 10.1007/978-1-4419-6950-7 | MR 2732563 | Zbl 1218.46003
[3] G. H. Hardy: Weierstrass's non-differentiable function. Trans. Am. Math. Soc. 17 (1916), 301-325. DOI 10.1090/S0002-9947-1916-1501044-1 | MR 1501044 | JFM 46.0401.03
[4] F. Lacina: Stochastic Integrals: Master's Thesis. Charles University, Prague (2016), Available at http://hdl.handle.net/20.500.11956/75283.
[5] R. Leśniewicz, W. Orlicz: On generalized variations. II. Stud. Math. 45 (1973), 71-109. DOI 10.4064/sm-45-1-71-109 | MR 346509 | Zbl 0218.26007
[6] G. A. Monteiro, A. Slavík, M. Tvrdý: Kurzweil-Stieltjes Integral: Theory and Applications. Series in Real Analysis 15. World Scientific, Hackensack (2019). DOI 10.1142/9432 | MR 3839599 | Zbl 1437.28001
[7] L. C. Young: An inequality of the Hölder type, connected with Stieltjes integration. Acta Math. 67 (1936), 251-282. DOI 10.1007/BF02401743 | MR 1555421 | Zbl 0016.10404
[8] A. Zygmund: Trigonometric Series. Volumes I and II Combined. Cambridge Mathematical Library. Cambridge University Press, Cambridge (2002). DOI 10.1017/CBO9781316036587 | MR 1963498 | Zbl 1084.42003

Affiliations:   Martin Rmoutil, Charles University, Faculty of Mathematics and Physics, Department of Mathematics Education, Sokolovská 83, 186 75 Prague 8 Karlín, Czech Republic, e-mail: rmoutil@karlin.mff.cuni.cz


 
PDF available at: