Czechoslovak Mathematical Journal, Vol. 74, No. 1, pp. 337-351, 2024


Complete monotonicity of the remainder in an asymptotic series related to the psi function

Zhen-Hang Yang, Jing-Feng Tian

Received August 2, 2023.   Published online February 12, 2024.

Abstract:  Let $p,q\in\mathbb{R}$ with $p-q\geq0$, $\sigma= \frac12 (p+q-1)$ and $s=\frac12 (1-p+q)$, and let $\mathcal{D}_m (x;p,q) =\mathcal{D}_0 ( x;p,q ) +\sum_{k=1}^m\frac{B_{2k} ( s) }{2k (x+\sigma)^{2k}},$ where $\mathcal{D}_0 (x;p,q) =\frac{\psi(x+p) +\psi(x+q) }2-\ln(x+\sigma).$ We establish the asymptotic expansion $\mathcal{D}_0 (x;p,q) \sim-\sum_{n=1}^{\infty} \frac{B_{2n} (s)}{2n (x+\sigma) ^{2n}}$ as $x\rightarrow\infty,$ where $B_{2n} (s)$ stands for the Bernoulli polynomials. Further, we prove that the functions $(-1) ^m\mathcal{D}_m ( x;p,q )$ and $(-1) ^{m+1}\mathcal{D}_m ( x;p,q )$ are completely monotonic in $x$ on $( -\sigma,\infty)$ for every $m\in\mathbb{N}_0$ if and only if $p-q\in[ 0, \tfrac12 ]$ and $p-q=1$, respectively. This not only unifies the two known results but also yields some new results.
Keywords:  psi function; asymptotic expansion; complete monotonicity
Classification MSC:  41A60, 33B15, 26A48


References:
[1] M. Abramowitz, I. A. Stegun (eds.): Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. National Bureau of Standards, Applied Mathematics Series 55. John Wiley, New York (1972). MR 0208798 | Zbl 0543.33001
[2] H. Alzer: On some inequalities for the gamma and psi functions. Math. Comput. 66 (1997), 373-389. DOI 10.1090/S0025-5718-97-00807-7 | MR 1388887 | Zbl 0854.33001
[3] R. D. Atanassov, U. V. Tsoukrovski: Some properties of a class of logarithmically completely monotonic functions. C. R. Acad. Bulg. Sci. 41 (1988), 21-23. MR 0939205  Zbl 0658.26010
[4] C.-P. Chen, R. B. Paris: Inequalities, asymptotic expansions and completely monotonic functions related to the gamma function. Appl. Math. Comput. 250 (2015), 514-529. DOI 10.1016/j.amc.2014.11.010 | MR 3285558 | Zbl 1328.33001
[5] J. L. Fields: The uniform asymptotic expansion of a ratio of Gamma functions. Constructive Theory of Functions. Publishing House of the Bulgarian Academy of Sciences, Sofia (1970), 171-176. MR 0399527 | Zbl 0263.33002
[6] C. L. Frenzen: Error bounds for asymptotic expansions of the ratio of two gamma functions. SIAM J. Math. Anal. 18 (1987), 890-896. DOI 10.1137/0518067 | MR 0883576 | Zbl 0625.41022
[7] Y. L. Luke: On the ratio of two gamma functions. Jñānābha 9-10 (1980), 143-148. MR 0683706 | Zbl 0504.33001
[8] F. W. J. Olver, D. W. Lozier, R. F. Boisvert, C. W. Clark (eds.): NIST Handbook of Mathematical Functions. Cambridge University Press, Cambridge (2010). DOI 10.1023/A:1022915830921 | MR 2723248 | Zbl 1198.00002
[9] F. Qi, C.-P. Chen: A complete monotonicity property of the gamma function. J. Math. Anal. Appl. 296 (2004), 603-607. DOI 10.1016/j.jmaa.2004.04.026 | MR 2075188 | Zbl 1046.33001
[10] R. L. Schilling, R. Song, Z. Vondraček: Bernstein functions: Theory and Applications. de Gruyter Studies in Mathematics 37. Walter de Gruyter, Berlin (2010). DOI 10.1515/9783110269338 | MR 2598208 | Zbl 1197.33002
[11] J.-F. Tian, Z. Yang: Asymptotic expansions of Gurland's ratio and sharp bounds for their remainders. J. Math. Anal. Appl. 493 (2021), Article ID 124545, 19 pages. DOI 10.1016/j.jmaa.2020.124545 | MR 4144294 | Zbl 1450.33006
[12] D. V. Widder: The Laplace Transform. Princeton Mathematical Series 6. Princeton University Press, Princeton (1941). MR 0005923 | Zbl 0063.08245
[13] Z.-H. Yang: Approximations for certain hyperbolic functions by partial sums of their Taylor series and completely monotonic functions related to gamma function. J. Math. Anal. Appl. 441 (2016), 549-564. DOI 10.1016/j.jmaa.2016.04.029 | MR 3491542 | Zbl 1336.33005
[14] Z.-H. Yang, Y.-M. Chu: Jordan type inequalities for hyperbolic functions and their applications. J. Funct. Spaces 2015 (2015), Article ID 370979, 4 pages. DOI 10.1155/2015/370979 | MR 3321607 | Zbl 1323.26021
[15] Z.-H. Yang, J.-F. Tian, M.-H. Ha: A new asymptotic expansion of a ratio of two gamma functions and complete monotonicity for its remainder. Proc. Am. Math. Soc. 148 (2020), 2163-2178. DOI 10.1090/proc/14917 | MR 4078101 | Zbl 1435.41034
[16] Z. Yang, J.-F. Tian: Complete monotonicity of the remainder of the asymptotic series for the ratio of two gamma functions. J. Math. Anal. Appl. 517 (2023), Article ID 126649, 15 pages. DOI 10.1016/j.jmaa.2022.126649 | MR 4477953 | Zbl 07595153

Affiliations:   Zhen-Hang Yang, State Grid Zhejiang Electric Power Company Research Institute, Hangzhou, Zhejiang 310014, P. R. China, e-mail: yzhkm@163.com; Jing-Feng Tian (corresponding author), Hebei Key Laboratory of Physics and Energy Technology, Department of Mathematics and Physics, North China Electric Power University, Baoding, Hebei 071003, P. R. China, e-mail: tianjf@ncepu.edu.cn


 
PDF available at: